skip to main content

This content will become publicly available on May 17, 2023

Title: Impact of varying side chain structure on organic electrochemical transistor performance: a series of oligoethylene glycol-substituted polythiophenes
The electrochemical doping/dedoping kinetics, and the organic electrochemical transistor (OECT) performance of a series of polythiophene homopolymers with ethylene glycol units in their side chains using both kosmotropic and chaotropic anion solutions were studied. We compare their performance to a reference polymer, the polythiophene derivative with diethylene glycol side chains, poly(3-{[2-(2-methoxyethoxy)ethoxy]methyl}thiophene-2,5-diyl) (P3MEEMT). We find larger OECT material figure of merit, μC *, where μ is the carrier mobility and C * is the volumetric capacitance, and faster doping kinetics with more oxygen atoms on the side chains, and if the oxygen atom is farther from the polythiophene backbone. Replacing the oxygen atom close to the polythiophene backbone with an alkyl unit increases the film π-stacking crystallinity (higher electronic conductivity in the undoped film) but sacrifices the available doping sites (lower volumetric capacitance C * in OECT). We show that this variation in C * is the dominant factor in changing the μC * product for this family of polymers. With more oxygen atoms on the side chain, or with the oxygen atom farther from the polymer backbone, we observe both more passive swelling and higher C *. In addition, we show that, compared to the doping speed, the dedoping speed, more » as measured via spectroelectrochemistry, is both generally faster and less dependent on ion species or side chain oxygen content. Last, through OECT, electrochemical impedance spectroscopy (EIS) and spectroelectrochemistry measurements, we show that the chaotropic anion PF 6 − facilitates higher doping levels, faster doping kinetics, and lower doping thresholds compared to the kosmotropic anion Cl − , although the exact differences depend on the polymer side chains. Our results highlight the importance of balancing μ and C * when designing molecular structures for OECT active layers. « less
; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Journal of Materials Chemistry A
Page Range or eLocation-ID:
10738 to 10749
Sponsoring Org:
National Science Foundation
More Like this
  1. The commercially available polyelectrolyte complex poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is ubiquitous in organic and hybrid electronics. As such, it has often been used as a benchmark material for fundamental studies and the development of new electronic devices. Yet, most studies on PEDOT:PSS have focused on its electronic conductivity in dry environments, with less consideration given to its ion transport, coupled ionic-electronic transport, and charge storage properties in aqueous environments. These properties are essential for applications in bioelectronics (sensors, actuators), charge storage devices, and electrochromic displays. Importantly, past studies on mixed ionic-electronic transport in PEDOT:PSS neglected to consider how the molecular structuremore »of PSS affects mixed ionic-electronic transport. Herein, we therefore investigated the effect of the molecular weight and size distribution of PSS on the electronic properties and morphology of PEDOT:PSS both in dry and aqueous environments, and overall performance in organic electrochemical transistors (OECTs). Using reversible addition–fragmentation chain transfer (RAFT) polymerization with two different chain transfer agents, six PSS samples with monomodal, narrow ( Đ = 1.1) and broad ( Đ = 1.7) size distributions and varying molecular weights were synthesized and used as matrices for PEDOT. We found that using higher molecular weight of PSS ( M n = 145 kg mol −1 ) and broad dispersity led to OECTs with the highest transconductance (up to 16 mS) and [ μC *] values (∼140 F cm −1 V −1 s −1 ) in PEDOT:PSS, despite having a lower volumetric capacitance ( C * = 35 ± 4 F cm −3 ). The differences were best explained by studying the microstructure of the films by atomic force microscopy (AFM). We found that heterogeneities in the PEDOT:PSS films (interconnected and large PEDOT- and PSS-rich domains) obtained from high molecular weight and high dispersity PSS led to higher charge mobility ( μ OECT ∼ 4 cm 2 V −1 s −1 ) and hence transconductance. These studies highlight the importance of considering molecular weight and size distribution in organic mixed ionic-electronic conductor, and could pave the way to designing high performance organic electronics for biological interfaces.« less
  2. null (Ed.)
    A major limitation for polymeric mixed ionic/electronic conductors (MIECs) is the trade-off between ionic and electronic conductivity; changes made that improve one typically hinder the other. In order to address this fundamental problem, this work provides insight into ways that we could improve one type of conduction without hindering the other. We investigated a common oligoethylene glycol side chain polymer by adjusting the oxygen atom content and position, providing structural insights for materials that better balanced the two conduction pathways. The investigated polymer series showed the prototypical conflict between ionic and electronic conduction for oxygen atom content, with increasing oxygenmore »atom content increasing ionic conductivity, but decreasing electronic conductivity; however, by increasing the oxygen atom distance from the polymer backbone, both ionic and electronic conductivity could be improved. Following these rules, we show that poly(3-(methoxyethoxybutyl)thiophene), when blended with lithium bistrifluoromethanesulfonimide (LiTFSI), matches the ionic conductivity of a comparable MIEC [poly(3-(methoxyethoxyethoxymethyl)thiophene)], while simultaneously showing higher electronic conductivity, highlighting the potential of this design strategy. We also provide strategies for tuning the MIEC performance to fit a desired application, depending on if electronic, ionic, or balanced conduction is most important. These results have implications beyond just polythiophene-based MIECs, as these strategies for balancing backbone crystallization and coordinating group interconnectivity apply for all semicrystalline conjugated polymers.« less
  3. This article reports a study of the effects of temperature on chaotropic anion (CA)-induced star-globule shape transitions in acidic water of three-arm star bottlebrushes composed of heterografted poly(ethylene oxide) (PEO) and either poly(2-( N , N -dimethylamino)ethyl methacrylate) (PDMAEMA) or poly(2-( N , N -diethylamino)ethyl methacrylate) (PDEAEMA) (the brushes denoted as SMB-11 and -22, respectively). The brush polymers were synthesized by grafting alkyne-end-functionalized PEO and PDMAEMA or PDEAEMA onto an azide-bearing three-arm star backbone polymer using the copper( i )-catalyzed alkyne-azide cycloaddition reaction. Six anions were studied for their effects on the conformations of SMB-11 and -22 in acidic water:more »super CAs [Fe(CN) 6 ] 3− and [Fe(CN)6] 4− , moderate CAs PF 6 − and ClO 4 − , weak CA I − , and for comparison, kosmotropic anion SO 4 2− . At 25 °C, the addition of super and moderate CAs induced shape transitions of SMB-11 and -22 in pH 4.50 water from a starlike to a collapsed globular state stabilized by PEO side chains, which was driven by the ion pairing of protonated tertiary amine groups with CAs and the chaotropic effect. The shape changes occurred at much lower salt concentrations for super CAs than moderate CAs. Upon heating from near room temperature to 70 °C, the super CA-collapsed brushes remained in the globular state, whereas the moderate CA-collapsed brushes underwent reversible globule-to-star shape transitions. The transition temperature increased with increasing salt concentration and was found to be higher for SMB-22 at the same salt concentration, presumably caused by the chaotropic effect. In contrast, I − and SO 4 2− had small effects on the conformations of SMB-11 and -22 at 25 °C in the studied salt concentration range, and only small and gradual size variations were observed upon heating to 70 °C. The results reported here may have potential uses in the design of stimuli-responsive systems for substance encapsulation and release.« less
  4. Molecular doping of a polythiophene with oligoethylene glycol side chains is found to strongly modulate not only the electrical but also the mechanical properties of the polymer. An oxidation level of up to 18% results in an electrical conductivity of more than 52 S cm −1 and at the same time significantly enhances the elastic modulus from 8 to more than 200 MPa and toughness from 0.5 to 5.1 MJ m −3 . These changes arise because molecular doping strongly influences the glass transition temperature T g and the degree of π-stacking of the polymer, as indicated by both X-raymore »diffraction and molecular dynamics simulations. Surprisingly, a comparison of doped materials containing mono- or dianions reveals that – for a comparable oxidation level – the presence of multivalent counterions has little effect on the stiffness. Evidently, molecular doping is a powerful tool that can be used for the design of mechanically robust conducting materials, which may find use within the field of flexible and stretchable electronics.« less
  5. Obtaining insights into the adsorption and assembly of polyelectrolytes on chemically variable calcium silicate hydrate (C-S-H) surfaces at the atomic scale has been a longstanding challenge in the chemistry of sustainable building materials and mineral–polymer interactions. Specifically, polycarboxylate ethers (PCEs) based on acrylate and poly(ethylene glycol) acrylate co-monomers are widely used to engineer the fluidity and hydration of cement and play an important role in the search for building materials with a lower carbon footprint. We report the first systematic study of PCE interactions with C-S-H surfaces at the molecular level using simulations at single molecule coverage and comparisons tomore »experimental data. The mechanism of adsorption of the ionic polymers is a two-step process with initial cation adsorption that reverses the mineral surface charge, followed by adsorption of the polymer backbone through ion pairing. Free energies of binding are tunable in a wide range of 0 to −5 kcal mol −1 acrylate monomer. Polymer attraction increases for higher calcium-to-silicate ratio of the mineral and higher pH value in solution, and varies significantly with PCE composition. Thereby, successive negatively charged carboxylate groups along the backbone induce conformation strain and local detachment from the surface. Polyethylene glycol (PEG) side chains in the copolymers avoid contact with the C-S-H surfaces. The results guide in the rational design of adsorption strength and conformations of the comb copolymers, and lay the groundwork to explore the vast phase space of C-S-H compositions, surface morphologies, electrolyte conditions, and PCE films of variable surface coverage. Chemically similar minerals and copolymers also find applications in other structural and biomimetic materials.« less