Abstract A large number of particle detectors employ liquid argon as their target material owing to its high scintillation yield and its ability to drift ionization charge over large distances. Scintillation light from argon is peaked at 128 nm and a wavelength shifter is required for its efficient detection. In this work, we directly compare the light yield achieved in two identical liquid argon chambers, one of which is equipped with polyethylene naphthalate (PEN) and the other with tetraphenyl butadiene (TPB) wavelength shifter. Both chambers are lined with enhanced specular reflectors and instrumented with SiPMs with a coverage fraction of approximately 1%, which represents a geometry comparable to the future large scale detectors. We measured the light yield of the PEN chamber to be 39.4 $$\,\pm \,$$ ± 0.4(stat) $$\,\pm \,$$ ± 1.9(syst)% of the yield of the TPB chamber. Using a Monte Carlo simulation this result is used to extract the wavelength shifting efficiency of PEN relative to TPB equal to 47.2 $$\,\pm \,$$ ± 5.7%. This result paves the way for the use of easily available PEN foils as a wavelength shifter, which can substantially simplify the construction of future liquid argon detectors.
more »
« less
Performance of the ReD TPC, a novel double-phase LAr detector with silicon photomultiplier readout
Abstract A double-phase argon Time Projection Chamber (TPC), with an active mass of 185 g, has been designed and constructed for the Recoil Directionality (ReD) experiment. The aim of the ReD project is to investigate the directional sensitivity of argon-based TPCs via columnar recombination to nuclear recoils in the energy range of interest (20– $$200\,\hbox {keV}_{nr}$$ 200 keV nr ) for direct dark matter searches. The key novel feature of the ReD TPC is a readout system based on cryogenic Silicon Photomultipliers (SiPMs), which are employed and operated continuously for the first time in an argon TPC. Over the course of 6 months, the ReD TPC was commissioned and characterised under various operating conditions using $$\gamma $$ γ -ray and neutron sources, demonstrating remarkable stability of the optical sensors and reproducibility of the results. The scintillation gain and ionisation amplification of the TPC were measured to be $$g_1 = (0.194 \pm 0.013)$$ g 1 = ( 0.194 ± 0.013 ) photoelectrons/photon and $$g_2 = (20.0 \pm 0.9)$$ g 2 = ( 20.0 ± 0.9 ) photoelectrons/electron, respectively. The ratio of the ionisation to scintillation signals (S2/S1), instrumental for the positive identification of a candidate directional signal induced by WIMPs, has been investigated for both nuclear and electron recoils. At a drift field of 183 V/cm, an S2/S1 dispersion of 12% was measured for nuclear recoils of approximately 60– $$90\,\hbox {keV}_{nr}$$ 90 keV nr , as compared to 18% for electron recoils depositing 60 keV of energy. The detector performance reported here meets the requirements needed to achieve the principal scientific goals of the ReD experiment in the search for a directional effect due to columnar recombination. A phenomenological parameterisation of the recombination probability in LAr is presented and employed for modeling the dependence of scintillation quenching and charge yield on the drift field for electron recoils between 50–500 keV and fields up to 1000 V/cm.
more »
« less
- NSF-PAR ID:
- 10335033
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- The European Physical Journal C
- Volume:
- 81
- Issue:
- 11
- ISSN:
- 1434-6044
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Bubble chambers using liquid xenon (and liquid argon) have been operated (resp. planned) by the Scintillating Bubble Chamber (SBC) collaboration for GeV-scale dark matter searches and CE ν NS from reactors. This will require a robust calibration program of the nucleation efficiency of low-energy nuclear recoils in these target media. Such a program has been carried out by the PICO collaboration, which aims to directly detect dark matter using C 3 F 8 bubble chambers. Neutron calibration data from mono-energetic neutron beam and Am-Be source has been collected and analyzed, leading to a global fit of a generic nucleation efficiency model for carbon and fluorine recoils, at thermodynamic thresholds of 2.45 and 3.29 keV. Fitting the many-dimensional model to the data (34 free parameters) is a non-trivial computational challenge, addressed with a custom Markov Chain Monte Carlo approach, which will be presented. Parametric MC studies undertaken to validate this methodology are also discussed. This fit paradigm demonstrated for the PICO calibration will be applied to existing and future scintillating bubble chamber calibration data.more » « less
-
Abstract A low-energy electronic recoil calibration of XENON1T, a dual-phase xenon time projection chamber, with an internal $${}^{37}$$ 37 Ar source was performed. This calibration source features a 35-day half-life and provides two mono-energetic lines at 2.82 keV and 0.27 keV. The photon yield and electron yield at 2.82 keV are measured to be ( $$32.3\,\pm \,0.3$$ 32.3 ± 0.3 ) photons/keV and ( $$40.6\,\pm \,0.5$$ 40.6 ± 0.5 ) electrons/keV, respectively, in agreement with other measurements and with NEST predictions. The electron yield at 0.27 keV is also measured and it is ( $$68.0^{+6.3}_{-3.7}$$ 68 . 0 - 3.7 + 6.3 ) electrons/keV. The $${}^{37}$$ 37 Ar calibration confirms that the detector is well-understood in the energy region close to the detection threshold, with the 2.82 keV line reconstructed at ( $$2.83\,\pm \,0.02$$ 2.83 ± 0.02 ) keV, which further validates the model used to interpret the low-energy electronic recoil excess previously reported by XENON1T. The ability to efficiently remove argon with cryogenic distillation after the calibration proves that $${}^{37}$$ 37 Ar can be considered as a regular calibration source for multi-tonne xenon detectors.more » « less
-
Abstract Using a data sample of $$\sqrt{s}=13\,\text {TeV}$$ s = 13 TeV proton-proton collisions collected by the CMS experiment at the LHC in 2017 and 2018 with an integrated luminosity of $$103\text {~fb}^{-1}$$ 103 fb - 1 , the $$\text {B}^{0}_{\mathrm{s}} \rightarrow \uppsi (\text {2S})\text {K}_\mathrm{S}^{0}$$ B s 0 → ψ ( 2S ) K S 0 and $$\text {B}^{0} \rightarrow \uppsi (\text {2S})\text {K}_\mathrm{S}^{0} \uppi ^+\uppi ^-$$ B 0 → ψ ( 2S ) K S 0 π + π - decays are observed with significances exceeding 5 standard deviations. The resulting branching fraction ratios, measured for the first time, correspond to $${\mathcal {B}}(\text {B}^{0}_{\mathrm{s}} \rightarrow \uppsi (\text {2S})K_\mathrm{S}^{0})/{\mathcal {B}}(\text {B}^{0}\rightarrow \uppsi (\text {2S})K_\mathrm{S}^{0}) = (3.33 \pm 0.69 (\text {stat})\, \pm 0.11\,(\text {syst}) \pm 0.34\,(f_{\mathrm{s}}/f_{\mathrm{d}})) \times 10^{-2}$$ B ( B s 0 → ψ ( 2S ) K S 0 ) / B ( B 0 → ψ ( 2S ) K S 0 ) = ( 3.33 ± 0.69 ( stat ) ± 0.11 ( syst ) ± 0.34 ( f s / f d ) ) × 10 - 2 and $${\mathcal {B}}(\text {B}^{0} \rightarrow \uppsi (\text {2S})\text {K}_\mathrm{S}^{0} \uppi ^{+} \uppi ^{-})/ {\mathcal {B}}(\text {B}^{0} \rightarrow \uppsi (\text {2S})\text {K}^{0}_{\mathrm{S}}) = 0.480 \pm 0.013\,(\text {stat}) \pm 0.032\,(\text {syst})$$ B ( B 0 → ψ ( 2S ) K S 0 π + π - ) / B ( B 0 → ψ ( 2S ) K S 0 ) = 0.480 ± 0.013 ( stat ) ± 0.032 ( syst ) , where the last uncertainty in the first ratio is related to the uncertainty in the ratio of production cross sections of $$\hbox {B}^{0}_{\mathrm{s}}$$ B s 0 and $$\hbox {B}^{0}$$ B 0 mesons, $$f_{\mathrm{s}}/f_{\mathrm{d}}$$ f s / f d .more » « less
-
Abstract Detectors based on liquid argon (LAr) often require surfaces that can shift vacuum ultraviolet (VUV) light and reflect the visible shifted light. For the LAr instrumentation of the LEGEND-200 neutrinoless double beta decay experiment, several square meters of wavelength-shifting reflectors (WLSR) were prepared: the reflector Tetratex® (TTX) was in-situ evaporated with the wavelength shifter tetraphenyl butadiene (TPB). For even larger detectors, TPB evaporation will be more challenging and plastic films of polyethylene naphthalate (PEN) are considered as an option to ease scalability. In this work, we first characterized the absorption (and reflectivity) of PEN, TPB (and TTX) films in response to visible light. We then measured TPB and PEN coupled to TTX in a LAr setup equipped with a VUV sensitive photomultiplier tube. The effective VUV photon yield in the setup was first measured using an absorbing reference sample, and the VUV reflectivity of TTX quantified. The characterization and simulation of the setup along with the measurements and modelling of the optical parameters of TPB, PEN and TTX allowed to estimate the absolute quantum efficiency (QE) of TPB and PEN in LAr (at 87K) for the first time: these were found to be above 67 and 49%, respectively (at 90% CL). These results provide relevant input for the optical simulations of experiments that use TPB in LAr, such as LEGEND-200, and for experiments that plan to use TPB or PEN to shift VUV scintillation light.more » « less