skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Common Problems Project: An Interdisciplinary, Community-Engaged, Problem-Based Pedagogy
The Common Problems Project (CP2) is an interdisciplinary, problem-based pedagogy that was launched in 2015 by four partner colleges in the State University of New York (SUNY) system (Cortland, Oneonta, Oswego, and Plattsburgh). Since its inception, 100 faculty have participated in CP2 and integrated the pedagogy into 134 courses to implement 47 collaborative projects. CP2 is based on a simple but innovative approach in which instructors from different disciplines identify a real-world problem they have in common. They pair their relevant existing classes so that students can work in interdisciplinary teams to propose solutions to the problem. This paper describes CP2 and its theoretical underpinnings, provides the results of a three-pronged approach to assessment, and outlines recommendations for faculty and institutions who may be interested in replicating CP2 on their campuses. CP2 model holds promise for a future of collaborative problem solving as a pedagogical approach, and, as such, this article will be of interest to a wide range of scholars, practitioners, educators, and administrators.  more » « less
Award ID(s):
1712203
PAR ID:
10335059
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of the Scholarship of Teaching and Learning
Volume:
22
Issue:
2
ISSN:
1527-9316
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This innovative practice work in progress paper describes an interdisciplinary course, “Industry 4.0 Robotics,” aimed at fostering deep learning and innovation in students across Manufacturing, Robotics, Computer Science, Software Engineering, Networking, Cybersecurity, and Technology Management. The course, jointly taught by faculty from different domains, emphasizes interdisciplinary connections in Industry 4.0 (IN4.0) Robotics through a combination of lectures, real-world insights from industry guest speakers, and hands-on interdisciplinary project-based learning. The contribution of this work lies in its innovative approach that combines proven best practices in education, inspiring deep learning, and an appreciation of interdisciplinary teamwork. The course design builds upon education research on the benefits of leveraging student creativity and requirements engineering practices as learning tools that allow students to develop a deeper understanding. While the benefits of these practices, commonly cited for developing enhanced problem-solving and cognitive flexibility skills, are becoming well understood in many individual disciplines, far less has been published on best practices for achieving this in interdisciplinary thinking. This course design explores this through using hybrid experiential problem based learning and project based learning for students to develop an understanding of interdisciplinary challenges and opportunities. While the benefits of individual educational practices have been studied within specific disciplines, this work extends the understanding of these practices when applied to interdisciplinary challenges, such as those encountered in Industry 4.0 robotics. The course design aims to bridge the gap between the technical aspects of individual disciplines and the social dimensions inherent in interdisciplinary work. This work in progress seeks to share early results showcasing the benefits of interdisciplinary teamwork and problem-solving. By articulating observations of commonalities and differences with prior work within individual disciplines, the paper aims to highlight the unique advantages of this interdisciplinary learning experience, offering insights into the potential impact on student learning. The chosen approach stems from the anticipation of future challenges increasingly necessitating interdisciplinary solutions. The goal of this work is to understand how best practices from individual disciplines can be effectively incorporated into interdisciplinary courses, maximizing student learning, and uncovering unique learning outcomes resulting from this innovative approach. The course design intentionally bridges the gap between the technical aspects of individual disciplines and the social dimensions inherent in interdisciplinary work, to encourage effective communication and collaboration within mixed student teams. While this remains a work in progress, initial observations reveal a heightened interdisciplinary curiosity among students, driving deep learning as they explore the interconnectedness of their own discipline with others within their teams. This curiosity propels self-led exploration and understanding of how their expertise intersects with diverse knowledge areas, creating opportunities for innovative solutions at these disciplinary intersections. This work contributes to the broader landscape of engineering and computing education by offering insights into the practical application of interdisciplinary learning in preparing students for the complex challenges of Industry 4.0. 
    more » « less
  2. Lesson study provides opportunities for teachers to collaboratively design, implement, and analyze instruction. Research illustrates its efficacy as a site for teacher learning. The setting for this article is a lesson study project involving preservice teachers, inservice teachers, and university faculty members. We supported collaborative reflection on practice among these individuals by using asynchronous and synchronous online tools and meeting protocols. Asynchronous online lesson-video review and tagging helped participants prepare to debrief about lessons they had implemented. Midway through one of our lesson study cycles, the COVID-19 pandemic occurred, eliminating opportunities to meet face-to-face for lesson debriefing sessions. In response, we developed and field-tested two protocols for online synchronous lesson study debriefing meetings. The protocols prompted conversations related to pedagogy, content, and content-specific pedagogy. After the debriefing sessions, lesson study group members reported improvements in their knowledge growth, self-efficacy, and expectations for student learning. We describe our use of online virtual tools and protocols to contribute to the literature on ways to support collaborative reflection on practice. 
    more » « less
  3. The devastation caused by recent natural disasters, such as earthquakes, tsunamis, and hurricanes, has increased awareness regarding the importance of providing interdisciplinary solutions to complex infrastructure challenges. In October 2018, the University of Puerto Rico received a Hispanic Serving Institution (HSI) collaborative award from the National Science Foundation (NSF) to develop an integrated curriculum on resilient and sustainable infrastructure. The project titled “Resilient Infrastructure and Sustainability Education – Undergraduate Program (RISE-UP) aims to educate future environmental designers and engineers to design and build a more resilient and sustainable infrastructure for Puerto Rico. This paper presents the design, initial implementation, and assessment of a curriculum encompassing synergistic interactions among these four domains: integrated project delivery, user-centered design, interdisciplinary problem-solving, and sustainability and resiliency. The project seeks to foster interdisciplinary problem-solving skills involving architects, engineers and construction managers, in order to better prepare them to face and provide solutions to minimize the impact of extreme natural environment events on infrastructure. The new curriculum stresses on problem-settings, the role that participants have on defining the characteristics of the problems that have to be solved, learning in action, reflecting on the process, and communication between the different stakeholders. This multisite and interdisciplinary program provides students with the necessary support, knowledge, and skills necessary to design and build resilient and sustainable infrastructure. This instructional endeavor consists of four courses designed to reduce gradually the difference between what students are able to accomplish with support structures and what students are able to accomplish on their own. To maximize and enhance the educational experience, the program blends a technology-infused classroom learning with broad co-curricular opportunities such as site visits, undergraduate research, and internships. As students advance in the program, they will be exposed and required to perform increasingly complex tasks. During the first year of the program, the following outcomes were achieved: 1) implementation of the faculty teamwork process to develop courses and analyze cases from an interdisciplinary perspective, 2) development and approval of an interdisciplinary curriculum on resilient and sustainable infrastructure, 3) development of case studies on situations associated with disaster and interdisciplinary responses, 4) development of a case study database, 5) establishment of an Advisory Board with government agency representatives and faculty, and 6) recruitment and enrollment of 30 students as the first RISE-UP cohort. In summary, the body of knowledge acquired from this project can serve as a model that can be replicated to develop and enhance academic programs at other institutions. 
    more » « less
  4. This work-in-progress paper details preliminary results from a qualitative study exploring faculty developers’ interactions with and perceptions of engineering instructional faculty (EIF) at Hispanic-Serving Institutions (HSIs). One potential resource for supporting EIF’s educational innovation efforts is their institutions’ center for teaching and learning (CTL). Through CTLs, and similarly named offices, faculty developers provide EIF and other faculty with professional development opportunities, such as pedagogy workshops, consultations, and seminars. By engaging in services provided by faculty developers, EIF can draw on new ideas, energy, and perspectives for instruction that they can incorporate into their beliefs and practices. This is particularly relevant at HSIs, which play a crucial role in enhancing the education of Latinx engineering students. This study aims to understand HSI faculty developers’ perceptions of EIF’s motivation to participate in professional development programming around instruction. Leveraging the self-determination theory of motivation, our preliminary results suggest that faculty developers recognize how extrinsic and intrinsic factors play an important role in EIF’s decisions to engage in instructional development programming. Based on our preliminary results, we encourage the faculty development community to leverage the identity of EIF as problem-solving engineers, identify and correct misconceptions about the role of faculty developers, and be intentional about how their programming responds to the factors intrinsically and extrinsically motivating EIF. 
    more » « less
  5. Eastern Mennonite University received a 5-year S-STEM award for their STEM Scholars Engaging in Local Problems (SSELP) program. The goal of this place-based, interdisciplinary scholarship program is to increase the number of academically talented, low-income students who graduate in STEM fields and either pursue immediate employment in STEM careers or STEM-related service or continue their STEM education in graduate school. In 2018 and 2019, two cohorts of seven students were recruited to major in biology, chemistry, engineering, computer science, mathematics, or environmental science. A key part of recruitment involved on-campus interviews, during a February Scholarship Day, between STEM faculty and potential scholars. As the yield rate for the event is high (54-66%), the university has continued this practice, funding additional STEM scholarships. In order to retain and graduate the scholars in STEM fields, the SSELP faculty designed and carried out various projects and activities to support the students. The SSELP Scholars participated in a first-year STEM Career Practicum class, a one-credit course that connected students with regional STEM practitioners across a variety of fields. The scholars were supported by peer tutors embedded in STEM classes, and now many are tutors themselves. They participated in collaborative projects where the cohorts worked to identify and solve a problem or need in their community. The SSELP scholars were supported by both faculty and peer mentors. Each scholarship recipient was matched with a faculty mentor in addition to an academic advisor. A faculty mentor was in a related STEM field but typically not teaching the student. Each scholar was matched with a peer mentor (junior or senior) in their intended major of study. In addition, community building activities were implemented to provide a significant framework for interaction within the cohort. To evaluate the progress of the SSELP program, multiple surveys were conducted. HERI/CIRP Freshman Survey was used in the fall of 2018 for the first cohort and 2019 for the second cohort. The survey indicated an upward shift in students’ perception of science and in making collaborative effort towards positive change. Preliminary data on the Science Motivation Questionnaire showed that the SSELP scholars began their university studies with lower averages than their non-SSELP STEM peers in almost every area of science motivation. After over three years of implementation of the NSF-funded STEM Scholars Engaging in Local Problems program, the recruitment effort has grown significantly in STEM fields in the university. Within the two cohorts, the most common majors were environmental science and engineering. While 100% of Cohorts 1 and 2 students were retained into the Fall semester of the second year, two students from Cohort 1 left the program between the third and fourth semesters of their studies. While one student from Cohort 2 had a leave of absence, they have returned to continue their studies. The support system formed among the SSELP scholars and between the scholars and faculty has benefited the students in both their academic achievement as well as their personal growth. 
    more » « less