skip to main content

Title: Jumping in lantern bugs (Hemiptera, Fulgoridae)
ABSTRACT Lantern bugs are amongst the largest of the jumping hemipteran bugs, with body lengths reaching 44 mm and masses reaching 0.7 g. They are up to 600 times heavier than smaller hemipterans that jump powerfully using catapult mechanisms to store energy. Does a similar mechanism also propel jumping in these much larger insects? The jumping performance of two species of lantern bugs (Hemiptera, Auchenorrhyncha, family Fulgoridae) from India and Malaysia was therefore analysed from high-speed videos. The kinematics showed that jumps were propelled by rapid and synchronous movements of both hind legs, with their trochantera moving first. The hind legs were 20–40% longer than the front legs, which was attributable to longer tibiae. It took 5–6 ms to accelerate to take-off velocities reaching 4.65 m s−1 in the best jumps by female Kalidasa lanata. During these jumps, adults experienced an acceleration of 77 g, required an energy expenditure of 4800 μJ and a power output of 900 mW, and exerted a force of 400 mN. The required power output of the thoracic jumping muscles was 21,000 W kg−1, 40 times greater than the maximum active contractile limit of muscle. Such a jumping performance therefore required a power amplification mechanism with energy storage in advance of the movement, as in their more » smaller relatives. These large lantern bugs are near isometrically scaled-up versions of their smaller relatives, still achieve comparable, if not higher, take-off velocities, and outperform other large jumping insects such as grasshoppers. « less
Authors:
; ; ; ; ;
Award ID(s):
2015317
Publication Date:
NSF-PAR ID:
10335114
Journal Name:
Journal of Experimental Biology
Volume:
224
Issue:
23
ISSN:
0022-0949
Sponsoring Org:
National Science Foundation
More Like this
  1. Synopsis Jumping is an important form of locomotion, and animals employ a variety of mechanisms to increase jump performance. While jumping is common in insects generally, the ability to jump is rare among ants. An exception is the Neotropical ant Gigantiops destructor (Fabricius 1804) which is well known for jumping to capture prey or escape threats. Notably, this ant begins a jump by rotating its abdomen forward as it takes off from the ground. We tested the hypotheses that abdominal rotation is used to either provide thrust during takeoff or to stabilize rotational momentum during the initial airborne phase of the jump. We used high speed videography to characterize jumping performance of G. destructor workers jumping between two platforms. We then anesthetized the ants and used glue to prevent their abdomens from rotating during subsequent jumps, again characterizing jump performance after restraining the abdomen in this manner. Our results support the hypothesis that abdominal rotation provides additional thrust as the maximum distance, maximum height, and takeoff velocity of jumps were reduced by restricting the movement of the abdomen compared with the jumps of unmanipulated and control treatment ants. In contrast, the rotational stability of the ants while airborne did notmore »appear to be affected. Changes in leg movements of restrained ants while airborne suggest that stability may be retained by using the legs to compensate for changes in the distribution of mass during jumps. This hypothesis warrants investigation in future studies on the jump kinematics of ants or other insects.« less
  2. When walking along a city street, you might encounter a range of scents and odors, from the smells of coffee and food to those of exhaust fumes and garbage. The odors are swept to your nose by air currents that move scents in two different ways. They carry them downwind in a process called advection, but they also mix them chaotically with clean air in a process called turbulence. What results is an odor plume: a complex ever-changing structure resembling the smoke rising from a chimney. Within a plume, areas of highly concentrated odor particles break up into smaller parcels as they travel further from the odor source. This means that the concentration of the odor does not vary along a smooth gradient. Instead, the odor arrives in brief and unpredictable bursts. Despite this complexity, insects are able to use odor plumes with remarkable ease to navigate towards food sources. But how do they do this? Answering this question has proved challenging because odor plumes are usually invisible. Over the years, scientists have come up with a number of creative solutions to this problem, including releasing soap bubbles together with odors, or using wind tunnels to generate simpler, straight plumesmore »in known locations. These approaches have shown that when insects encounter an odor, they surge upwind towards its source. When they lose track of the odor, they cast themselves crosswind in an effort to regain contact. But this does not explain how insects are able to navigate irregular odor plumes, in which both the timing and location of the odor bursts are unpredictable. Demir, Kadakia et al. have now bridged this gap by showing how fruit flies are attracted to smoke, an odorant that is also visible. By injecting irregular smoke plumes into a custom-built wind tunnel, and then imaging flies as they walked through it, Demir, Kadakia et al. showed that flies make random halts when navigating the plume. Each time they stop, they use the timing of the odor bursts reaching them to decide when to start moving again. Rather than turning every time they detect an odor, flies initiate turns at random times. When several odor bursts arrive in a short time, the flies tend to orient these turns upwind rather than downwind. Flies therefore rely on a different strategy to navigate irregular odor plumes than the ‘surge and cast’ method they use for regular odor streams. Successful navigation through complex irregular plumes involves a degree of random behavior. This helps the flies gather information about an unpredictable environment as they search for the source of the odor. These findings may help to understand how other insects use odor to navigate in the real world, for example, how mosquitoes track down human hosts.« less
  3. Stochastic oscillators based on emerging nanodevices are attractive because of their ultra-low power requirement and the ability to exhibit stochastic resonance, a phenomenon where synchronization to weak input signals is enabled due to ambient noise. In this work, a low barrier nanomagnet-based stochastic oscillator is demonstrated, whose output jumps spontaneously between two states by harnessing the ambient thermal noise, requiring no additional power. By utilizing spin–orbit torque in a three-terminal device configuration, phase synchronization of these oscillators to weak periodic drives of particular frequencies is demonstrated. Experiments are performed to show the tunability of this synchronization frequency by controlling an electrical feedback parameter. The current required for synchronization is more than eight times smaller than that required for the deterministic switching of similar nanomagnetic devices. A model based on Kramers’ transition rate in a symmetric double well potential is adopted and dynamical simulations are performed to explain the experimental results.

  4. Synopsis

    During locomotion, cervical muscles must be active to stabilize the head as the body accelerates and decelerates. We hypothesized that cervical muscles are also part of the linked chain of axial muscles that provide core stabilization against torques applied to the hip joint by the extrinsic muscles of the legs. To test whether specific cervical muscles play a role in postural stabilization of the head and/or core stabilization of the pelvic girdle, we used surface electromyography to measure changes in muscle activity in response to force manipulations during constant speed running and maximum effort counter-movement jumps. We found that doubling the mass of the head during both running and maximum effort jumping had little or no effect on (1) acceleration of the body and (2) cervical muscle activity. Application of horizontal forward and rearward directed forces at the pelvis during running tripled mean fore and aft accelerations, thereby increasing both the pitching moments on the head and flexion and extension torques applied to the hip. These manipulations primarily resulted in increases in cervical muscle activity that is appropriate for core stabilization of the pelvis. Additionally, when subjects jumped maximally with an applied downward directed force that reduced acceleration andmore »therefore need for cervical muscles to stabilize the head, cervical muscle activity did not decrease. These results suggest that during locomotion, rather than acting to stabilize the head against the effects of inertia, the superficial muscles of the neck monitored in this study help to stabilize the pelvis against torques imposed by the extrinsic muscles of the legs at the hip joint. We suggest that a division of labor may exist between deep cervical muscles that presumably provide postural stabilization of the head versus superficial cervical muscles that provide core stabilization against torques applied to the pelvic and pectoral girdles by the extrinsic appendicular muscles.

    « less
  5. Abstract

    Arboreal frogs navigate complex environments and face diverse mechanical properties within their physical environment. Such frogs may encounter substrates that are damped and absorb energy or are elastic and can store and release energy as the animal pushes off during take-off. When dealing with a compliant substrate, a well-coordinated jump would allow for the recovery of elastic energy stored in the substrate to amplify mechanical power, effectively adding an in-series spring to the hindlimbs. We tested the hypothesis that effective use of compliant substrates requires active changes to muscle activation and limb kinematics to recover energy from the substrate. We designed an actuated force platform, modulated with a real-time feedback controller to vary the stiffness of the substrate. We quantified the kinetics and kinematics of Cuban tree frogs (Osteopilus septentrionalis) jumping off platforms at four different stiffness conditions. In addition, we used electromyography to examine the relationship between muscle activation patterns and substrate compliance during take-off in a knee extensor (m. cruralis) and an ankle extensor (m. plantaris). We find O. septentrionalis do not modulate motor patterns in response to substrate compliance. Although not actively modulated, changes in the rate of limb extension suggest a trade-off between power amplificationmore »and energy recovery from the substrate. Our results suggest that compliant substrates disrupt the inertial catch mechanism that allows tree frogs to store elastic energy in the tendon, thereby slowing the rate of limb extension and increasing the duration of take-off. However, the slower rate of limb extension does provide additional time to recover more energy from the substrate. This work serves to broaden our understanding of how the intrinsic mechanical properties of a system may broaden an organism’s capacity to maintain performance when facing environmental perturbations.

    « less