Let $$V_1, V_2, V_3, \dots $$ be a sequence of $$\mathbb {Q}$$-vector spaces where $$V_n$$ carries an action of $$\mathfrak{S}_n$$. Representation stability and multiplicity stability are two related notions of when the sequence $$V_n$$ has a limit. An important source of stability phenomena arises when $$V_n$$ is the $$d^{th}$$ homology group (for fixed $$d$$) of the configuration space of $$n$$ distinct points in some fixed topological space $$X$$. We replace these configuration spaces with moduli spaces of tuples $$(W_1, \dots, W_n)$$ of subspaces of a fixed complex vector space $$\mathbb {C}^N$$ such that $$W_1 + \cdots + W_n = \mathbb {C}^N$$. These include the varieties of spanning line configurations which are tied to the Delta Conjecture of symmetric function theory. 
                        more » 
                        « less   
                    
                            
                            Zarankiewicz’s problem for semilinear hypergraphs
                        
                    
    
            Abstract A bipartite graph $$H = \left (V_1, V_2; E \right )$$ with $$\lvert V_1\rvert + \lvert V_2\rvert = n$$ is semilinear if $$V_i \subseteq \mathbb {R}^{d_i}$$ for some $$d_i$$ and the edge relation E consists of the pairs of points $$(x_1, x_2) \in V_1 \times V_2$$ satisfying a fixed Boolean combination of s linear equalities and inequalities in $$d_1 + d_2$$ variables for some s . We show that for a fixed k , the number of edges in a $$K_{k,k}$$ -free semilinear H is almost linear in n , namely $$\lvert E\rvert = O_{s,k,\varepsilon }\left (n^{1+\varepsilon }\right )$$ for any $$\varepsilon> 0$$ ; and more generally, $$\lvert E\rvert = O_{s,k,r,\varepsilon }\left (n^{r-1 + \varepsilon }\right )$$ for a $$K_{k, \dotsc ,k}$$ -free semilinear r -partite r -uniform hypergraph. As an application, we obtain the following incidence bound: given $$n_1$$ points and $$n_2$$ open boxes with axis-parallel sides in $$\mathbb {R}^d$$ such that their incidence graph is $$K_{k,k}$$ -free, there can be at most $$O_{k,\varepsilon }\left (n^{1+\varepsilon }\right )$$ incidences. The same bound holds if instead of boxes, one takes polytopes cut out by the translates of an arbitrary fixed finite set of half-spaces. We also obtain matching upper and (superlinear) lower bounds in the case of dyadic boxes on the plane, and point out some connections to the model-theoretic trichotomy in o -minimal structures (showing that the failure of an almost-linear bound for some definable graph allows one to recover the field operations from that graph in a definable manner). 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10335141
- Date Published:
- Journal Name:
- Forum of Mathematics, Sigma
- Volume:
- 9
- ISSN:
- 2050-5094
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Let { s j } j = 1 n \left \{ s_{j}\right \} _{j=1}^{n} be positive integers. We show that for any 1 ≤ L ≤ n , 1\leq L\leq n, ‖ ∏ j = 1 n ( 1 − z s j ) ‖ L ∞ ( | z | = 1 ) ≥ exp  ( 1 2 e L ( s 1 s 2 … s L ) 1 / L ) . \begin{equation*} \left \Vert \prod _{j=1}^{n}\left ( 1-z^{s_{j}}\right ) \right \Vert _{L_{\infty }\left ( \left \vert z\right \vert =1\right ) }\geq \exp \left ( \frac {1}{2e}\frac {L}{\left ( s_{1}s_{2}\ldots s_{L}\right ) ^{1/L}}\right ) . \end{equation*} In particular, this gives geometric growth if a positive proportion of the { s j } \left \{ s_{j}\right \} are bounded. We also show that when the { s j } \left \{ s_{j}\right \} grow regularly and faster than j ( log  j ) 2 + ε j\left ( \log j\right ) ^{2+\varepsilon } , some ε > 0 \varepsilon >0 , then the norms grow faster than exp  ( ( log  n ) 1 + δ ) \exp \left ( \left ( \log n\right ) ^{1+\delta }\right ) for some δ > 0 \delta >0 .more » « less
- 
            Given finite sets $$X_1,\dotsc,X_m$$ in $$\mathbb{R}^d$$ (with $$d$$ fixed), we prove that there are respective subsets $$Y_1,\dotsc,Y_m$$ with $$\lvert Y_i\rvert \geq \frac{1}{poly(m)}\lvert X_i\rvert$$ such that, for $$y_1\in Y_1,\dotsc,y_m\in Y_m$$, the orientations of the\linebreak $(d+1)$-tuples from $$y_1,\dotsc,y_m$$ do not depend on the actual choices of points $$y_1,\dotsc,y_m$$. This generalizes previously known case when all the sets $$X_i$$ are equal. Furthermore, we give a construction showing that polynomial dependence on $$m$$ is unavoidable, as well as an algorithm that approximates the best-possible constants in this result.more » « less
- 
            We prove a single-value version of Reshetnyak’s theorem. Namely, if a non-constant map from a domain satisfies the estimate at almost every for some , and , then is discrete, the local index is positive in , and every neighborhood of a point of is mapped to a neighborhood of . Assuming this estimate for a fixed at every is equivalent to assuming that the map is -quasiregular, even if the choice of is different for each . Since the estimate also yields a single-value Liouville theorem, it hence appears to be a good pointwise definition of -quasiregularity. As a corollary of our single-value Reshetnyak’s theorem, we obtain a higher-dimensional version of the argument principle that played a key part in the solution to the Calderón problem.more » « less
- 
            Abstract We study quantitative relationships between the triangle removal lemma and several of its variants. One such variant, which we call the triangle-free lemma , states that for each $$\epsilon>0$$ there exists M such that every triangle-free graph G has an $$\epsilon$$ -approximate homomorphism to a triangle-free graph F on at most M vertices (here an $$\epsilon$$ -approximate homomorphism is a map $$V(G) \to V(F)$$ where all but at most $$\epsilon \left\lvert{V(G)}\right\rvert^2$$ edges of G are mapped to edges of F ). One consequence of our results is that the least possible M in the triangle-free lemma grows faster than exponential in any polynomial in $$\epsilon^{-1}$$ . We also prove more general results for arbitrary graphs, as well as arithmetic analogues over finite fields, where the bounds are close to optimal.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    