skip to main content


Title: Vulnerability to climate change of a microendemic lizard species from the central Andes
Abstract Given the rapid loss of biodiversity as consequence of climate change, greater knowledge of ecophysiological and natural history traits are crucial to determine which environmental factors induce stress and drive the decline of threatened species. Liolaemus montanezi (Liolaemidae), a xeric-adapted lizard occurring only in a small geographic range in west-central Argentina, constitutes an excellent model for studies on the threats of climate change on such microendemic species. We describe field data on activity patterns, use of microhabitat, behavioral thermoregulation, and physiology to produce species distribution models (SDMs) based on climate and ecophysiological data. Liolaemus montanezi inhabits a thermally harsh environment which remarkably impacts their activity and thermoregulation. The species shows a daily bimodal pattern of activity and mostly occupies shaded microenvironments. Although the individuals thermoregulate at body temperatures below their thermal preference they avoid high-temperature microenvironments probably to avoid overheating. The population currently persists because of the important role of the habitat physiognomy and not because of niche tracking, seemingly prevented by major rivers that form boundaries of their geographic range. We found evidence of habitat opportunities in the current range and adjacent areas that will likely remain suitable to the year 2070, reinforcing the relevance of the river floodplain for the species’ avoidance of extinction.  more » « less
Award ID(s):
2016372
NSF-PAR ID:
10335176
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Behavioral thermoregulation is an efficient mechanism to buffer the physiological effects of climate change. Thermal ecology studies have traditionally tested how thermal constraints shape thermoregulatory behaviors without accounting for the potential major effects of landscape structure and water availability. Thus, we lack a general understanding of the multifactorial determinants of thermoregulatory behaviors in natural populations. In this study, we quantified the relative contribution of elevation, thermal gradient, moisture gradient, and landscape structure in explaining geographic variation in thermoregulation strategies of a terrestrial ectotherm species. We measured field‐active body temperature, thermal preferences, and operative environmental temperatures to calculate thermoregulation indices, including thermal quality of the habitat and thermoregulation efficiency for a very large sample of common lizards (Zootoca vivipara) from 21 populations over 3 yr across the Massif Central mountain range in France. We used an information‐theoretic approach to compare eight a priori thermo‐hydroregulation hypotheses predicting how behavioral thermoregulation should respond to environmental conditions. Environmental characteristics exerted little influence on thermal preference with the exception that females from habitats with permanent access to water had lower thermal preferences. Field body temperatures and accuracy of thermoregulation were best predicted by the interaction between air temperature and a moisture index. In mesic environments, field body temperature and thermoregulation accuracy increased with air temperature, but they decreased in drier habitats. Thermoregulation efficiency (difference between thermoregulation inaccuracy and the thermal quality of the habitat) was maximized in cooler and more humid environments and was mostly influenced by the thermal quality of the habitat. Our study highlights complex patterns of variation in thermoregulation strategies, which are mostly explained by the interaction between temperature and water availability, independent of the elevation gradient or thermal heterogeneity. Although changes in landscape structure were expected to be the main driver of extinction rate of temperate zone ectotherms with ongoing global change, we conclude that changes in water availability coupled with rising temperatures might have a drastic impact on the population dynamics of some ectotherm species.

     
    more » « less
  2. While bees are critical to sustaining a large proportion of global food production, as well as pollinating both wild and cultivated plants, they are decreasing in both numbers and diversity. Our understanding of the factors driving these declines is limited, in part, because we lack sufficient data on the distribution of bee species to predict changes in their geographic range under climate change scenarios. Additionally lacking is adequate data on the behavioral and anatomical traits that may make bees either vulnerable or resilient to human-induced environmental changes, such as habitat loss and climate change. Fortunately, a wealth of associated attributes can be extracted from the specimens deposited in natural history collections for over 100 years. Extending Anthophila Research Through Image and Trait Digitization (Big-Bee) is a newly funded US National Science Foundation Advancing Digitization of Biodiversity Collections project. Over the course of three years, we will create over one million high-resolution 2D and 3D images of bee specimens (Fig. 1), representing over 5,000 worldwide bee species, including most of the major pollinating species. We will also develop tools to measure bee traits from images and generate comprehensive bee trait and image datasets to measure changes through time. The Big-Bee network of participating institutions includes 13 US institutions (Fig. 2) and partnerships with US government agencies. We will develop novel mechanisms for sharing image datasets and datasets of bee traits that will be available through an open, Symbiota-Light (Gilbert et al. 2020) data portal called the Bee Library. In addition, biotic interaction and species association data will be shared via Global Biotic Interactions (Poelen et al. 2014). The Big-Bee project will engage the public in research through community science via crowdsourcing trait measurements and data transcription from images using Notes from Nature (Hill et al. 2012). Training and professional development for natural history collection staff, researchers, and university students in data science will be provided through the creation and implementation of workshops focusing on bee traits and species identification. We are also planning a short, artistic college radio segment called "the Buzz" to get people excited about bees, biodiversity, and the wonders of our natural world. 
    more » « less
  3. Males, Jamie (Ed.)
    Mountains hold much of the world’s taxonomic diversity, but global climate change threatens this diversity by altering the distributions of montane species. While numerous studies have documented upslope shifts in elevational ranges, these patterns are highly variable across geographic regions and taxa. This variation in how species’ range shifts are manifesting along elevational gradients likely reflects the diversity of mechanisms that determines elevational ranges and modulates movements, and stands in contrast to latitudinal gradients, where range shifts show less variability and appear more predictable. Here, we review observed elevational range shifts in a single taxonomic group–birds–a group that has received substantial research attention and thus provides a useful context for exploring variability in range shifts while controlling for the mechanisms that drive range shifts across broader taxonomic groups. We then explore the abiotic and biotic factors that are known to define elevational ranges, as well as the constraints that may prevent birds from shifting. Across the literature, temperature is generally invoked as the prime driver of range shifts while the role of precipitation is more neglected. However, temperature is less likely to act directly on elevational ranges, instead mediating biotic factors such as habitat and food availability, predator activity, and parasite prevalence, which could in turn modulate range shifts. Dispersal ability places an intrinsic constraint on elevational range shifts, exacerbated by habitat fragmentation. While current research provides strong evidence for the importance of various drivers of elevational ranges and shifts, testing the relative importance of these factors and achieving a more holistic view of elevational gradients will require integration of expanding datasets, novel technologies, and innovative techniques. 
    more » « less
  4. Abstract Aim

    Populations of cold‐adapted species at the trailing edges of geographic ranges are particularly vulnerable to the negative effects of climate change from the combination of exposure to warm temperatures and high sensitivity to heat. Many of these species are predicted to decline under future climate scenarios, but they could persist if they can adapt to warming climates either physiologically or behaviourally. We aim to understand local variation in contemporary habitat use and use this information to identify signs of adaptive capacity. We focus on moose (Alces alces), a charismatic species of conservation and public interest.

    Location

    The northeastern United States, along the trailing edge of the moose geographic range in North America.

    Methods

    We compiled data on occurrences and habitat use of moose from remote cameras and GPS collars across the northeastern United States. We use these data to build habitat suitability models at local and regional spatial scales and then to predict future habitat suitability under climate change. We also use fine‐scale GPS data to model relationships between habitat use and temperature on a daily temporal scale and to predict future habitat use.

    Results

    We find that habitat suitability for moose will decline under a range of climate change scenarios. However, moose across the region differ in their use of climatic and habitat space, indicating that they could exhibit adaptive capacity. We also find evidence for behavioural responses to weather, where moose increase their use of forested wetland habitats in warmer places and/or times.

    Main conclusions

    Our results suggest that there will be significant shifts in moose distribution due to climate change. However, if there is spatial variation in thermal tolerance, trailing‐edge populations could adapt to climate change. We highlight that prioritizing certain habitats for conservation (i.e., thermal refuges) could be crucial for this adaptation.

     
    more » « less
  5. Abstract

    Range expansions are a potential outcome of changes in habitat suitability, which commonly result as a consequence of climate change. Hypotheses on such changes in the geographic distribution of a certain species can be evaluated using population genetic structure and demography. In this study we explore the population genetic structure, genetic variability, demographic history of, and habitat suitability forAmblyomma americanum, a North American tick species that is a known vector of several pathogenic microorganisms. We used a double digestion restriction site‐associated DNA sequencing technique (dd‐RAD seq) and discovered 8,181 independent single nucleotide polymorphisms (SNPs) in 189 ticks from across the geographic range of the species. Genetic diversity was low, particularly when considering the broad geographic range of this species. The edge populations were less diverse than populations belonging to the historic range, possibly indicative of a range expansion, but this hypothesis was not statistically supported by a test based on genetic data. Nonetheless, moderate levels of population structure and substructure were detected between geographic regions. For New England, demographic and species distribution models support a scenario whereA. americanumwas present in more northern locations in the past, underwent a bottleneck, and subsequently recovered. These results are consistent with a hypothesis that this species is re‐establishing in this area, rather than one focused on range expansion from the south. This hypothesis is consistent with old records describing the presence ofA. americanumin the northeastern US in the early colonial period.

     
    more » « less