skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A linear second-order in time unconditionally energy stable finite element scheme for a Cahn–Hilliard phase-field model for two-phase incompressible flow of variable densities
Award ID(s):
1912715 2012031
PAR ID:
10335290
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Computer Methods in Applied Mechanics and Engineering
Volume:
387
Issue:
C
ISSN:
0045-7825
Page Range / eLocation ID:
114186
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. NA (Ed.)
    Clock generation for high-speed wireline receivers must provide multiple clock phases with high-resolution rotation. To address this, an 8-phase 17 GHz clock generation circuit with built-in 6b rotation is presented. Multi-phase injection is used to perform reference-side phase rotation to efficiently generate and rotate eight clock phases. The injection method is analyzed with a model to study the introduced nonlinearity, and the effect of the injection strength is discussed. Designed by using BAG3++ for layout-aware design optimization, the proposed circuit achieves 98 fs RMS jitter and a measured DNLpp and INLpp of 1.26 and 4.05 LSB respectively, while consuming 33 mW. 
    more » « less
  2. A high frequency multi-phase clock generator circuit with a 6b phase rotator is presented for multi-phase wireline receivers. Multi-phase injection is used to efficiently generate and rotate 8 clock phases. Unlike prior rotator-based work, this work does not use time modulation, reducing the resulting deterministic jitter. A model is presented to study the nonlinearity introduced by the technique. The proposed 17 GHz circuit was implemented in the Intel 16 process and consumes 33 mW. The measured RMS jitter is $$\mathbf{9 8} \mathrm{fs}$$, and the measured DNLpp and INLpp are 1.26 and 4.05 LSB respectively. 
    more » « less