skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Title: Quantum Galois groups of subfactors
For a finite-index [Formula: see text] subfactor [Formula: see text], we prove the existence of a universal Hopf ∗-algebra (or, a discrete quantum group in the analytic language) acting on [Formula: see text] in a trace-preserving fashion and fixing [Formula: see text] pointwise. We call this Hopf ∗-algebra the quantum Galois group for the subfactor and compute it in some examples of interest, notably for arbitrary irreducible finite-index depth-two subfactors. Along the way, we prove the existence of universal acting Hopf algebras for more general structures (tensors in enriched categories), in the spirit of recent work by Agore, Gordienko and Vercruysse.  more » « less
Award ID(s):
2001128
PAR ID:
10335404
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Journal of Mathematics
Volume:
33
Issue:
02
ISSN:
0129-167X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Let [Formula: see text] be a residually finite dimensional algebra (not necessarily associative) over a field [Formula: see text]. Suppose first that [Formula: see text] is algebraically closed. We show that if [Formula: see text] satisfies a homogeneous almost identity [Formula: see text], then [Formula: see text] has an ideal of finite codimension satisfying the identity [Formula: see text]. Using well known results of Zelmanov, we conclude that, if a residually finite dimensional Lie algebra [Formula: see text] over [Formula: see text] is almost [Formula: see text]-Engel, then [Formula: see text] has a nilpotent (respectively, locally nilpotent) ideal of finite codimension if char [Formula: see text] (respectively, char [Formula: see text]). Next, suppose that [Formula: see text] is finite (so [Formula: see text] is residually finite). We prove that, if [Formula: see text] satisfies a homogeneous probabilistic identity [Formula: see text], then [Formula: see text] is a coset identity of [Formula: see text]. Moreover, if [Formula: see text] is multilinear, then [Formula: see text] is an identity of some finite index ideal of [Formula: see text]. Along the way we show that if [Formula: see text] has degree [Formula: see text], and [Formula: see text] is a finite [Formula: see text]-algebra such that the probability that [Formula: see text] (where [Formula: see text] are randomly chosen) is at least [Formula: see text], then [Formula: see text] is an identity of [Formula: see text]. This solves a ring-theoretic analogue of a (still open) group-theoretic problem posed by Dixon, 
    more » « less
  2. Starting with a vertex-weighted pointed graph [Formula: see text], we form the free loop algebra [Formula: see text] defined in Hartglass–Penneys’ article on canonical [Formula: see text]-algebras associated to a planar algebra. Under mild conditions, [Formula: see text] is a non-nuclear simple [Formula: see text]-algebra with unique tracial state. There is a canonical polynomial subalgebra [Formula: see text] together with a Dirac number operator [Formula: see text] such that [Formula: see text] is a spectral triple. We prove the Haagerup-type bound of Ozawa–Rieffel to verify [Formula: see text] yields a compact quantum metric space in the sense of Rieffel. We give a weighted analog of Benjamini–Schramm convergence for vertex-weighted pointed graphs. As our [Formula: see text]-algebras are non-nuclear, we adjust the Lip-norm coming from [Formula: see text] to utilize the finite dimensional filtration of [Formula: see text]. We then prove that convergence of vertex-weighted pointed graphs leads to quantum Gromov–Hausdorff convergence of the associated adjusted compact quantum metric spaces. As an application, we apply our construction to the Guionnet–Jones–Shyakhtenko (GJS) [Formula: see text]-algebra associated to a planar algebra. We conclude that the compact quantum metric spaces coming from the GJS [Formula: see text]-algebras of many infinite families of planar algebras converge in quantum Gromov–Hausdorff distance. 
    more » « less
  3. In this paper, we present a homotopical framework for studying invertible gapped phases of matter from the point of view of infinite spin lattice systems, using the framework of algebraic quantum mechanics. We define the notion of quantum state types. These are certain lax-monoidal functors from the category of finite-dimensional Hilbert spaces to the category of topological spaces. The universal example takes a finite-dimensional Hilbert space [Formula: see text] to the pure state space of the quasi-local algebra of the quantum spin system with Hilbert space [Formula: see text] at each site of a specified lattice. The lax-monoidal structure encodes the tensor product of states, which corresponds to stacking for quantum systems. We then explain how to formally extract parametrized phases of matter from quantum state types, and how they naturally give rise to [Formula: see text]-spaces for an operad we call the “multiplicative” linear isometry operad. We define the notion of invertible quantum state types and explain how the passage to phases for these is related to group completion. We also explain how invertible quantum state types give rise to loop-spectra. Our motivation is to provide a framework for constructing Kitaev’s loop-spectrum of bosonic invertible gapped phases of matter. Finally, as a first step toward understanding the homotopy types of the loop-spectra associated to invertible quantum state types, we prove that the pure state space of any UHF algebra is simply connected. 
    more » « less
  4. We prove that commutative algebras in braided tensor categories do not admit faithful Hopf algebra actions unless they come from group actions. We also show that a group action allows us to see the algebra as the regular algebra in the representation category of the acting group. 
    more » « less
  5. We consider how the outputs of the Kadison transitivity theorem and Gelfand–Naimark–Segal (GNS) construction may be obtained in families when the initial data are varied. More precisely, for the Kadison transitivity theorem, we prove that for any nonzero irreducible representation [Formula: see text] of a [Formula: see text]-algebra [Formula: see text] and [Formula: see text], there exists a continuous function [Formula: see text] such that [Formula: see text] for all [Formula: see text], where [Formula: see text] is the set of pairs of [Formula: see text]-tuples [Formula: see text] such that the components of [Formula: see text] are linearly independent. Versions of this result where [Formula: see text] maps into the self-adjoint or unitary elements of [Formula: see text] are also presented. Regarding the GNS construction, we prove that given a topological [Formula: see text]-algebra fiber bundle [Formula: see text], one may construct a topological fiber bundle [Formula: see text] whose fiber over [Formula: see text] is the space of pure states of [Formula: see text] (with the norm topology), as well as bundles [Formula: see text] and [Formula: see text] whose fibers [Formula: see text] and [Formula: see text] over [Formula: see text] are the GNS Hilbert space and closed left ideal, respectively, corresponding to [Formula: see text]. When [Formula: see text] is a smooth fiber bundle, we show that [Formula: see text] and [Formula: see text] are also smooth fiber bundles; this involves proving that the group of ∗-automorphisms of a [Formula: see text]-algebra is a Banach Lie group. In service of these results, we review the topology and geometry of the pure state space. A simple non-interacting quantum spin system is provided as an example illustrating the physical meaning of some of these results. 
    more » « less