skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Generic Quantum Metric Rigidity
Abstract We introduce the coherent algebra of a compact metric measure space by analogy with the corresponding concept for a finite graph. As an application we show that upon topologizing the collection of isomorphism classes of compact metric measure spaces appropriately, the subset consisting of those with trivial compact quantum automorphism group is of 2nd Baire category. The latter result can be paraphrased as saying that “most” compact metric measure spaces have no (quantum) symmetries; in particular, they also have trivial ordinary (i.e., classical) automorphism group.  more » « less
Award ID(s):
2001128
PAR ID:
10335407
Author(s) / Creator(s):
Date Published:
Journal Name:
International Mathematics Research Notices
Volume:
2021
Issue:
18
ISSN:
1073-7928
Page Range / eLocation ID:
14379 to 14397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We prove a number of results to the effect that generic quantum graphs (defined via operator systems as in the work of Duan-Severini-Winter / Weaver) have few symmetries: for a Zariski-dense open set of tuples ( X 1 , ⋯ , X d ) (X_1,\cdots ,X_d) of traceless self-adjoint operators in the n × n n\times n matrix algebra the corresponding operator system has trivial automorphism group, in the largest possible range for the parameters: 2 ≤ d ≤ n 2 − 3 2\le d\le n^2-3 . Moreover, the automorphism group is generically abelian in the larger parameter range 1 ≤ d ≤ n 2 − 2 1\le d\le n^2-2 . This then implies that for those respective parameters the corresponding random-quantum-graph model built on the GUE ensembles of X i X_i ’s (mimicking the Erdős-Rényi G ( n , p ) G(n,p) model) has trivial/abelian automorphism group almost surely. 
    more » « less
  2. Abstract To any free group automorphism, we associate a real pretree with several nice properties. First, it has a rigid/non-nesting action of the free group with trivial arc stabilizers. Secondly, there is an expanding pretree-automorphism of the real pretree that represents the free group automorphism. Finally and crucially, the loxodromic elements are exactly those whose (conjugacy class) length grows exponentially under iteration of the automorphism; thus, the action on the real pretree is able to detect the growth type of an element. This construction extends the theory of metric trees that has been used to study free group automorphisms. The new idea is that one can equivariantly blow up an isometric action on a real tree with respect to other real trees and get a rigid action on a treelike structure known as a real pretree. Topology plays no role in this construction as all the work is done in the language of pretrees (intervals). 
    more » « less
  3. Following ideas of Caffarelli and Silvestre in [20], and using recent progress in hyperbolic fillings, we define fractional p-Laplacians (−∆p)θ with 0 < θ < 1 on any compact, doubling metric measure space (Z, d, ν), and prove existence, regularity and stability for the non- homogenous non-local equation (−∆p)θu = f. These results, in turn, rest on the new existence, global Hölder regularity and stability theorems that we prove for the Neumann problem for p-Laplacians ∆p, 1 < p < ∞, in bounded domains of measure metric spaces endowed with a doubling measure that supports a Poincaré inequality. Our work also includes as special cases much of the previous results by other authors in the Euclidean, Riemannian and Carnot group settings. Unlike other recent contributions in the metric measure spaces context, our work does not rely on the assumption that (Z, d, ν) supports a Poincaré inequality. 
    more » « less
  4. We study the persistent homology of both functional data on compact topological spaces and structural data presented as compact metric measure spaces. One of our goals is to define persistent homology so as to capture primarily properties of the shape of a signal, eliminating otherwise highly persistent homology classes that may exist simply because of the nature of the domain on which the signal is defined. We investigate the stability of these invariants using metrics that downplay regions where signals are weak. The distance between two signals is small if they exhibit high similarity in regions where they are strong, regardless of the nature of their full domains, in particular allowing different homotopy types. Consistency and estimation of persistent homology of metric measure spaces from data are studied within this framework. We also apply the methodology to the construction of multi-scale topological descriptors for data on compact Riemannian manifolds via metric relaxations derived from the heat kernel. 
    more » « less
  5. Starting with a vertex-weighted pointed graph [Formula: see text], we form the free loop algebra [Formula: see text] defined in Hartglass–Penneys’ article on canonical [Formula: see text]-algebras associated to a planar algebra. Under mild conditions, [Formula: see text] is a non-nuclear simple [Formula: see text]-algebra with unique tracial state. There is a canonical polynomial subalgebra [Formula: see text] together with a Dirac number operator [Formula: see text] such that [Formula: see text] is a spectral triple. We prove the Haagerup-type bound of Ozawa–Rieffel to verify [Formula: see text] yields a compact quantum metric space in the sense of Rieffel. We give a weighted analog of Benjamini–Schramm convergence for vertex-weighted pointed graphs. As our [Formula: see text]-algebras are non-nuclear, we adjust the Lip-norm coming from [Formula: see text] to utilize the finite dimensional filtration of [Formula: see text]. We then prove that convergence of vertex-weighted pointed graphs leads to quantum Gromov–Hausdorff convergence of the associated adjusted compact quantum metric spaces. As an application, we apply our construction to the Guionnet–Jones–Shyakhtenko (GJS) [Formula: see text]-algebra associated to a planar algebra. We conclude that the compact quantum metric spaces coming from the GJS [Formula: see text]-algebras of many infinite families of planar algebras converge in quantum Gromov–Hausdorff distance. 
    more » « less