skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Self-force effects in post-Minkowskian scattering
Abstract We revisit the old problem of the self-force on a particle moving in a weak-field spacetime in the context of renewed interest in two-body gravitational scattering. We analytically calculate the scalar, electromagnetic, and gravitational self-force on a particle moving on a straight-line trajectory at a large distance from a Newtonian star, and use these results to find the associated correction to its motion. In the gravitational case we must also include the matter-mediated force, which acts at the same perturbative order as the gravitational self-force. We further augment the gravitational results with geodesic calculations at second order in the central body mass to determine the full, explicit solution to the two-body gravitational scattering problem at second post-Minkowskian order (2PM). We calculate the momentum transfer (which reproduces Westpfahl’s old result), the change in mechanical angular momentum (which matches the radiative flux recently computed by Damour), and the change in mechanical mass moment (the time-space components of the angular momentum tensor), which has not previously appeared. Besides the new 2PM results of explicit trajectories and all conserved quantities, this work clarifies the role of gravitational self-force in PM scattering theory and provides a foundation for higher-order calculations.  more » « less
Award ID(s):
1752809
PAR ID:
10335439
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Classical and Quantum Gravity
Volume:
39
Issue:
9
ISSN:
0264-9381
Page Range / eLocation ID:
095001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The matter in an accretion disk must lose angular momentum when moving radially inwards but how this works has long been a mystery. By calculating the trajectories of individual colliding neutrals, ions, and electrons in a weakly ionized 2D plasma containing gravitational and magnetic fields, we numerically simulate accretion disk dynamics at the particle level. As predicted by Lagrangian mechanics, the fundamental conserved global quantity is the total canonical angular momentum, not the ordinary angular momentum. When the Kepler angular velocity and the magnetic field have opposite polarity, collisions between neutrals and charged particles cause: (i) ions to move radially inwards, (ii) electrons to move radially outwards, (iii) neutrals to lose ordinary angular momentum, and (iv) charged particles to gain canonical angular momentum. Neutrals thus spiral inward due to their decrease of ordinary angular momentum while the accumulation of ions at small radius and accumulation of electrons at large radius produces a radially outward electric field. In 3D, this radial electric field would drive an out-of-plane poloidal current that produces the magnetic forces that drive bidirectional astrophysical jets. Because this neutral angular momentum loss depends only on neutrals colliding with charged particles, it should be ubiquitous. Quantitative scaling of the model using plausible disk density, temperature, and magnetic field strength gives an accretion rate of 3 × 10−8solar mass per year, which is in good agreement with observed accretion rates. 
    more » « less
  2. We ask the question of how angular momentum is conserved in electroweak interaction processes. To introduce the problem with a minimum of mathematics, we first raise the same issue in elastic scattering of a circularly polarized photon by an atom, where the scattered photon has a different spin direction than the original photon, and note its presence in scattering of a fully relativistic spin-1/2 particle by a central potential. We then consider inverse beta decay in which an electron is emitted following the capture of a neutrino on a nucleus. While both the incident neutrino and final electron spins are antiparallel to their momenta, the final spin is in a different direction than that of the neutrino—an apparent change of angular momentum. However, prior to measurement of the final particle, in all these cases angular momentum is indeed conserved. The apparent nonconservation of angular momentum arises in the quantum measurement process in which the measuring apparatus does not have an initially well-defined angular momentum, but is localized in the outside world. We generalize the discussion to massive neutrinos and electrons, and examine nuclear beta decay and electron-positron annihilation processes through the same lens, enabling physically transparent derivations of angular and helicity distributions in these reactions. 
    more » « less
  3. ABSTRACT With the advent of ALMA, it is now possible to observationally constrain how discs form around deeply embedded protostars. In particular, the recent ALMA C3H2 line observations of the nearby protostar L1527 have been interpreted as evidence for the so-called ‘centrifugal barrier,’ where the protostellar envelope infall is gradually decelerated to a stop by the centrifugal force in a region of super-Keplerian rotation. To test the concept of centrifugal barrier, which was originally based on angular momentum conserving-collapse of a rotating test particle around a fixed point mass, we carry out simple axisymmetric hydrodynamic simulations of protostellar disc formation including a minimum set of ingredients: self-gravity, rotation, and a prescribed viscosity that enables the disc to accrete. We find that a super-Keplerian region can indeed exist when the viscosity is relatively large but, unlike the classic picture of centrifugal barrier, the infalling envelope material is not decelerated solely by the centrifugal force. The region has more specific angular momentum than its surrounding envelope material, which points to an origin in outward angular momentum transport in the disc (subject to the constraint of disc expansion by the infalling envelope), rather than the spin-up of the envelope material envisioned in the classic picture as it falls closer to the centre in order to conserve angular momentum. For smaller viscosities, the super-Keplerian rotation is weaker or non-existing. We conclude that, despite the existence of super-Keplerian rotation in some parameter regime, the classic picture of centrifugal barrier is not supported by our simulations. 
    more » « less
  4. A<sc>bstract</sc> In certain kinematic and particle mass configurations, triangle singularities may lead to line-shapes which mimic the effects of resonances. This well-known effect is scrutinized here in the presence of final-state rescattering. The goal is achieved first by utilizing general arguments provided by Landau equations, and second by applying a modern scattering formalism with explicit two- and three-body unitarity. 
    more » « less
  5. A bstract We study causality in gravitational systems beyond the classical limit. Using on-shell methods, we consider the 1-loop corrections from charged particles to the photon energy-momentum tensor — the self-stress — that controls the quantum interaction between two on-shell photons and one off-shell graviton. The self-stress determines in turn the phase shift and time delay in the scattering of photons against a spectator particle of any spin in the eikonal regime. We show that the sign of the β -function associated to the running gauge coupling is related to the sign of time delay at small impact parameter. Our results show that, at first post-Minkowskian order, asymptotic causality, where the time delay experienced by any particle must be positive, is respected quantum mechanically. Contrasted with asymptotic causality, we explore a local notion of causality, where the time delay is longer than the one of gravitons, which is seemingly violated by quantum effects. 
    more » « less