skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Solutions to the non-cutoff Boltzmann equation uniformly near a Maxwellian
The purpose of this paper is to show how the combination of the well-known results for convergence to equilibrium and conditional regularity, in addition to a short-time existence result, lead to a quick proof of the existence of global smooth solutions for the non cutoff Boltzmann equation when the initial data is close to equilibrium. We include a short-time existence result for polynomially-weighted $$ L^\infty $$ initial data. From this, we deduce that if the initial data is sufficiently close to a Maxwellian in this norm, then a smooth solution exists globally in time.  more » « less
Award ID(s):
1764285 2054888
PAR ID:
10335459
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Mathematics in Engineering
Volume:
5
Issue:
2
ISSN:
2640-3501
Page Range / eLocation ID:
1 to 36
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We investigate an infinite‐horizon time‐inconsistent mean‐field game (MFG) in a discrete time setting. We first present a classic equilibrium for the MFG and its associated existence result. This classic equilibrium aligns with the conventional equilibrium concept studied in MFG literature when the context is time‐consistent. Then we demonstrate that while this equilibrium produces an approximate optimal strategy when applied to the related ‐agent games, it does so solely in a precommitment sense. Therefore, it cannot function as a genuinely approximate equilibrium strategy from the perspective of a sophisticated agent within the ‐agent game. To address this limitation, we propose a newconsistentequilibrium concept in both the MFG and the ‐agent game. We show that a consistent equilibrium in the MFG can indeed function as an approximate consistent equilibrium in the ‐agent game. Additionally, we analyze the convergence of consistent equilibria for ‐agent games toward a consistent MFG equilibrium as tends to infinity. 
    more » « less
  2. This paper introduces a supervisory unit, called the stability governor (SG), that provides improved guarantees of stability for constrained linear systems under Model Predictive Control (MPC) without terminal constraints. At each time step, the SG alters the setpoint command supplied to the MPC problem so that the current state is guaranteed to be inside of the region of attraction for an auxiliary equilibrium point. The proposed strategy is shown to be recursively feasible and asymptotically stabilizing for all initial states sufficiently close to any equilibrium of the system. Thus, asymptotic stability of the target equilibrium can be guaranteed for a large set of initial states even when a short prediction horizon is used. A numerical example demonstrates that the stability governed MPC strategy can recover closed-loop stability in a scenario where a standard MPC implementation without terminal constraints leads to divergent trajectories. 
    more » « less
  3. Abstract We consider the computation of internal solutions for a time domain plasma wave equation with unknown coefficients from the data obtained by sampling its transfer function at the boundary. The computation is performed by transforming known background snapshots using the Cholesky decomposition of the data-driven Gramian. We show that this approximation is asymptotically close to the projection of the true internal solution onto the subspace of background snapshots. This allows us to derive a generally applicable bound for the error in the approximation of internal fields from boundary data for a time domain plasma wave equation with an unknown potential $$q$$. For general $$q\in L^\infty$$, we prove convergence of these data generated internal fields in one dimension for two examples of initial waves. The first is for piecewise constant initial data and sampling $$\tau$$ equal to the pulse width. The second is piecewise linear initial data and sampling at half the pulse width. We show that in both cases the data generated solutions converge in $L^2$ at order $$\sqrt{\tau}$$. We present numerical experiments validating the result and the sharpness of this convergence rate. 
    more » « less
  4. Abstract We consider a nematic liquid crystal flow with partially free boundary in a smooth bounded domain in . We prove regularity estimates and the global existence of weak solutions enjoying partial regularity properties, and a uniqueness result. 
    more » « less
  5. We prove that the time of classical existence of smooth solutions to the relativistic Euler equations can be bounded from below in terms of norms that measure the “(sound) wave-part” of the data in Sobolev space and “transport-part” in higher regularity Sobolev space and Hölder spaces. The solutions are allowed to have nontrivial vorticity and entropy. We use the geometric framework from [M. M. Disconzi and J. Speck, The relativistic Euler equations: Remarkable null structures and regularity properties, Ann. Henri Poincaré 20(7) (2019) 2173–2270], where the relativistic Euler flow is decomposed into a “wave-part”, that is, geometric wave equations for the velocity components, density and enthalpy, and a “transport-part”, that is, transport-div-curl systems for the vorticity and entropy gradient. Our main result is that the Sobolev norm [Formula: see text] of the variables in the “wave-part” and the Hölder norm [Formula: see text] of the variables in the “transport-part” can be controlled in terms of initial data for short times. We note that the Sobolev norm assumption [Formula: see text] is the optimal result for the variables in the “wave-part”. Compared to low-regularity results for quasilinear wave equations and the three-dimensional (3D) non-relativistic compressible Euler equations, the main new challenge of the paper is that when controlling the acoustic geometry and bounding the wave equation energies, we must deal with the difficulty that the vorticity and entropy gradient are four-dimensional space-time vectors satisfying a space-time div-curl-transport system, where the space-time div-curl part is not elliptic. Due to lack of ellipticity, one cannot immediately rely on the approach taken in [M. M. Disconzi and J. Speck, The relativistic Euler equations: Remarkable null structures and regularity properties, Ann. Henri Poincaré 20(7) (2019) 2173–2270] to control these terms. To overcome this difficulty, we show that the space-time div-curl systems imply elliptic div-curl-transport systems on constant-time hypersurfaces plus error terms that involve favorable differentiations and contractions with respect to the four-velocity. By using these structures, we are able to adequately control the vorticity and entropy gradient with the help of energy estimates for transport equations, elliptic estimates, Schauder estimates and Littlewood–Paley theory. 
    more » « less