skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A polyfold proof of the Arnold conjecture
Abstract We give a detailed proof of the homological Arnold conjecture for nondegenerate periodic Hamiltonians on general closed symplectic manifolds M via a direct Piunikhin–Salamon–Schwarz morphism. Our constructions are based on a coherent polyfold description for moduli spaces of pseudoholomorphic curves in a family of symplectic manifolds degenerating from $${{\mathbb {C}}{\mathbb {P}}}^1\times M$$ C P 1 × M to $${{\mathbb {C}}}^+ \times M$$ C + × M and $${{\mathbb {C}}}^-\times M$$ C - × M , as developed by Fish–Hofer–Wysocki–Zehnder as part of the Symplectic Field Theory package. To make the paper self-contained we include all polyfold assumptions, describe the coherent perturbation iteration in detail, and prove an abstract regularization theorem for moduli spaces with evaluation maps relative to a countable collection of submanifolds. The 2011 sketch of this proof was joint work with Peter Albers, Joel Fish.  more » « less
Award ID(s):
1708916
PAR ID:
10335704
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Selecta Mathematica
Volume:
28
Issue:
1
ISSN:
1022-1824
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We show that the K-moduli spaces of log Fano pairs $$\left(\mathbb {P}^1\times \mathbb {P}^1, cC\right)$$ , where C is a $(4,4)$ curve and their wall crossings coincide with the VGIT quotients of $(2,4)$ , complete intersection curves in $$\mathbb {P}^3$$ . This, together with recent results by Laza and O’Grady, implies that these K-moduli spaces form a natural interpolation between the GIT moduli space of $(4,4)$ curves on $$\mathbb {P}^1\times \mathbb {P}^1$$ and the Baily–Borel compactification of moduli of quartic hyperelliptic K3 surfaces. 
    more » « less
  2. Abstract We show that the K-moduli spaces of log Fano pairs $$({\mathbb {P}}^3, cS)$$ ( P 3 , c S ) where S is a quartic surface interpolate between the GIT moduli space of quartic surfaces and the Baily–Borel compactification of moduli of quartic K3 surfaces as c varies in the interval (0, 1). We completely describe the wall crossings of these K-moduli spaces. As the main application, we verify Laza–O’Grady’s prediction on the Hassett–Keel–Looijenga program for quartic K3 surfaces. We also obtain the K-moduli compactification of quartic double solids, and classify all Gorenstein canonical Fano degenerations of $${\mathbb {P}}^3$$ P 3 . 
    more » « less
  3. We show that there exist infinitely many closed 3–manifolds that do not embed in closed symplectic 4–manifolds, disproving a conjecture of Etnyre–Min–Mukherjee. To do this, we construct L–spaces that cannot bound positive- or negative-definite manifolds. The arguments use Heegaard Floer correction terms and instanton moduli spaces. 
    more » « less
  4. We extend results of Looijenga--Lunts and Verbitsky and show that the total Lie algebra $$\mathfrak g$$ for the intersection cohomology of a primitive symplectic variety $$X$$ with isolated singularities is isomorphic to $$\mathfrak g \cong \mathfrak{so}\left(\left(IH^2(X, \mathbb Q), Q_X\right)\oplus \mathfrak h\right),$$ where $$Q_X$$ is the intersection Beauville--Bogomolov--Fujiki form and $$\mathfrak h$$ is a hyperbolic plane. This gives a new, algebraic proof for irreducible holomorphic symplectic manifolds which does not rely on the hyperk\"ahler metric. Along the way, we study the structure of $$IH^*(X, \mathbb Q)$$ as a $$\mathfrak{g}$$-representation -- with particular emphasis on the Verbitsky component, multidimensional Kuga--Satake constructions, and Mumford--Tate algebras -- and give some immediate applications concerning the $P = W$ conjecture for primitive symplectic varieties. Comment: 41 pages; Final journal version; new subsection on LLV algebra for symplectic orbifolds 
    more » « less
  5. Abstract Given a contact structure on a manifold V together with a supporting open book decomposition, Bourgeois gave an explicit construction of a contact structure on $$V \times {\mathbb {T}}^2$$ V × T 2 . We prove that all such structures are universally tight in dimension 5, independent of whether the original contact manifold is itself tight or overtwisted. In arbitrary dimensions, we provide obstructions to the existence of strong symplectic fillings of Bourgeois manifolds. This gives a broad class of new examples of weakly but not strongly fillable contact 5-manifolds, as well as the first examples of weakly but not strongly fillable contact structures in all odd dimensions. These obstructions are particular instances of more general obstructions for $${\mathbb {S}}^1$$ S 1 -invariant contact manifolds. We also obtain a classification result in arbitrary dimensions, namely that the unit cotangent bundle of the n -torus has a unique symplectically aspherical strong filling up to diffeomorphism. 
    more » « less