Abstract Contraction properties of transport maps between probability measures play an important role in the theory of functional inequalities. The actual construction of such maps, however, is a non-trivial task and, so far, relies mostly on the theory of optimal transport. In this work, we take advantage of the infinite-dimensional nature of the Gaussian measure and construct a new transport map, based on the Föllmer process, which pushes forward the Wiener measure onto probability measures on Euclidean spaces. Utilizing the tools of the Malliavin and stochastic calculus in Wiener space, we show that this Brownian transport map is a contraction in various settings where the analogous questions for optimal transport maps are open. The contraction properties of the Brownian transport map enable us to prove functional inequalities in Euclidean spaces, which are either completely new or improve on current results. Further and related applications of our contraction results are the existence of Stein kernels with desirable properties (which lead to new central limit theorems), as well as new insights into the Kannan–Lovász–Simonovits conjecture. We go beyond the Euclidean setting and address the problem of contractions on the Wiener space itself. We show that optimal transport maps and causal optimal transport maps (which are related to Brownian transport maps) between the Wiener measure and other target measures on Wiener space exhibit very different behaviors.
more »
« less
Counterexamples in scale calculus
We construct counterexamples to classical calculus facts such as the inverse and implicit function theorems in scale calculus—a generalization of multivariable calculus to infinite-dimensional vector spaces, in which the reparameterization maps relevant to symplectic geometry are smooth. Scale calculus is a corner stone of polyfold theory, which was introduced by Hofer, Wysocki, and Zehnder as a broadly applicable tool for regularizing moduli spaces of pseudoholomorphic curves. We show how the novel nonlinear scale-Fredholm notion in polyfold theory overcomes the lack of implicit function theorems, by formally establishing an often implicitly used fact: The differentials of basic germs—the local models for scale-Fredholm maps—vary continuously in the space of bounded operators when the base point changes. We moreover demonstrate that this continuity holds only in specific coordinates, by constructing an example of a scale-diffeomorphism and scale-Fredholm map with discontinuous differentials. This justifies the high technical complexity in the foundations of polyfold theory.
more »
« less
- Award ID(s):
- 1708916
- PAR ID:
- 10335709
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 116
- Issue:
- 18
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- 8787 to 8797
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We shall establish the core of singular integral theory and pseudodifferential calculus over the archetypal algebras of noncommutative geometry: quantum forms of Euclidean spaces and tori. Our results go beyond Connes’ pseudodifferential calculus for rotation algebras, thanks to a new form of Calderón-Zygmund theory over these spaces which crucially incorporates nonconvolution kernels. We deduce L p L_p -boundedness and Sobolev p p -estimates for regular, exotic and forbidden symbols in the expected ranks. In the L 2 L_2 level both Calderón-Vaillancourt and Bourdaud theorems for exotic and forbidden symbols are also generalized to the quantum setting. As a basic application of our methods, we prove L p L_p -regularity of solutions for elliptic PDEs.more » « less
-
In a previous paper (Farajzadeh-Tehrani in Geom Topol 26:989–1075, 2022), for any logarithmic symplectic pair (X, D) of a symplectic manifold X and a simple normal crossings symplectic divisor D, we introduced the notion of log pseudo-holomorphic curve and proved a compactness theorem for the moduli spaces of stable log curves. In this paper, we introduce a natural Fredholm setup for studying the deformation theory of log (and relative) curves. As a result, we obtain a logarithmic analog of the space of Ruan–Tian perturbations for these moduli spaces. For a generic compatible pair of an almost complex structure and a log perturbation term, we prove that the subspace of simple maps in each stratum is cut transversely. Such perturbations enable a geometric construction of Gromov–Witten type invariants for certain semi-positive pairs (X, D) in arbitrary genera. In future works, we will use local perturbations and a gluing theorem to construct log Gromov–Witten invariants of arbitrary such pair (X, D).more » « less
-
Abstract The Dehn function measures the area of minimal discs that fill closed curves in a space; it is an important invariant in analysis, geometry, and geometric group theory. There are several equivalent ways to define the Dehn function, varying according to the type of disc used. In this paper, we introduce a new definition of the Dehn function and use it to prove several theorems. First, we generalize the quasi-isometry invariance of the Dehn function to a broad class of spaces. Second, we prove Hölder extension properties for spaces with quadratic Dehn function and their asymptotic cones. Finally, we show that ultralimits and asymptotic cones of spaces with quadratic Dehn function also have quadratic Dehn function. The proofs of our results rely on recent existence and regularity results for area-minimizing Sobolev mappings in metric spaces.more » « less
-
We prove the relative Grauert–Riemenschneider vanishing, Kawamata–Viehweg vanishing, and Kollár injectivity theorems for proper morphisms of schemes of equal characteristic zero, solving conjectures of Boutot and Kawakita. Our proof uses the Grothendieck limit theorem for sheaf cohomology and Zariski–Riemann spaces. We also show that these vanishing and injectivity theorems hold for locally Moishezon (respectively, projective) morphisms of quasi-excellent algebraic spaces and semianalytic germs of complex-analytic spaces (respectively, quasi-excellent formal schemes and non-Archimedean analytic spaces), all in equal characteristic zero. We give many applications of our vanishing results. For example, we extend Boutot’s theorem to all Noetherian Q-algebras by showing that pseudo-rationality descends under pure maps of Q-algebras. This solves a conjecture of Boutot and answers a question of Schoutens. The proofs of this Boutot-type result and of our vanishing and injectivity theorems all use a new characterization of rational singularities using Zariski–Riemann spaces.more » « less
An official website of the United States government

