Abstract We report on the utility of Radiofrequency Amplification by Stimulated Emission Radiation (RASER) for background‐free proton detection of hyperpolarized biomolecules. We performed hyperpolarization of ≈0.3 M ethyl acetate via pairwise parahydrogen addition to vinyl acetate. A proton NMR signal with signal‐to‐noise ratio exceeding 100 000 was detected without radio‐frequency excitation at the clinically relevant magnetic field of 1.4 T using a standard (non‐cryogenic) inductive detector with quality factor ofQ=68. No proton background signal was observed from protonated solvent (methanol) or other added co‐solvents such as ethanol, water or bovine serum. Moreover, we demonstrate RASER detection without radio‐frequency excitation of a bolus of hyperpolarized contrast agent in biological fluid. Completely background‐free proton detection of hyperpolarized contrast agents in biological media paves the way to new applications in the areas of high‐resolution NMR spectroscopy and in vivo spectroscopy and imaging. 
                        more » 
                        « less   
                    
                            
                            High-accuracy absolute magnetometry with application to the Fermilab Muon g-2 experiment
                        
                    
    
            Abstract We present details of a high-accuracy absolute scalar magnetometer based on pulsed proton NMR. The B-field magnitude is determined from the precession frequency of proton spins in a cylindrical sample of water after accounting for field perturbations from probe materials, sample shape, and other corrections. Features of the design, testing procedures, and corrections necessary for qualification as an absolute scalar magnetometer are described. The device was tested at B = 1.45 T but can be modified for a range exceeding 1–3 T. The magnetometer was used to calibrate other NMR magnetometers and measure absolute magnetic field magnitudes to an accuracy of 19 parts per billion as part of a measurement of the muon magnetic moment anomaly at Fermilab. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10335732
- Date Published:
- Journal Name:
- Journal of Instrumentation
- Volume:
- 16
- Issue:
- 12
- ISSN:
- 1748-0221
- Page Range / eLocation ID:
- P12041
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Radio amplification by stimulated emission of radiation (RASER) was recently discovered in a low‐field NMR spectrometer incorporating a highly specialized radio‐frequency resonator, where a high degree of proton‐spin polarization was achieved by reversible parahydrogen exchange. RASER activity, which results from the coherent coupling between the nuclear spins and the inductive detector, can overcome the limits of frequency resolution in NMR. Here we show that this phenomenon is not limited to low magnetic fields or the use of resonators with high‐quality factors. We use a commercial bench‐top 1.4 T NMR spectrometer in conjunction with pairwise parahydrogen addition producing proton‐hyperpolarized molecules in the Earth's magnetic field (ALTADENA condition) or in a high magnetic field (PASADENA condition) to induce RASER without any radio‐frequency excitation pulses. The results demonstrate that RASER activity can be observed on virtually any NMR spectrometer and measures most of the important NMR parameters with high precision.more » « less
- 
            Dynamic Nuclear Polarization (DNP) can increase the sensitivity of Nuclear Magnetic Resonance (NMR), but it is challenging in the liquid state at high magnetic fields. In this study we demonstrate significant enhancements of NMR signals (up to 70 on 13C) in the liquid state by scalar Overhauser DNP at 14.1 T, with high resolution (~0.1 ppm) and relatively large sample volume (~100 µL).more » « less
- 
            Abstract We present an automated method to identify high‐frequency geomagnetic disturbances in ground magnetometer data and classify the events by the source of the perturbations. We developed an algorithm to search for and identify changes in the surface magnetic field, dB/dt, with user‐specified amplitude and timescale. We used this algorithm to identify transient‐large‐amplitude (TLA) dB/dtevents that have timescale less than 60 s and amplitude >6 nT/s. Because these magnetic variations have similar amplitude and time characteristics to instrumental or man‐made noise, the algorithm identified a large number of noise‐type signatures as well as geophysical signatures. We manually classified these events by their sources (noise‐type or geophysical) and statistically characterized each type of event; the insights gained were used to more specifically define a TLA geophysical event and greatly reduce the number of noise‐type dB/dtidentified. Next, we implemented a support vector machine classification algorithm to classify the remaining events in order to further reduce the number of noise‐type dB/dtin the final data set. We examine the performance of our complete dB/dtsearch algorithm in widely used magnetometer databases and the effect of a common data processing technique on the results. The automated algorithm is a new technique to identify geomagnetic disturbances and instrumental or man‐made noise, enabling systematic identification and analysis of space weather related dB/dtevents and automated detection of magnetometer noise intervals in magnetic field databases.more » « less
- 
            The nitrogen-vacancy (NV) center in diamond has enabled studies of nanoscale nuclear magnetic resonance (NMR) and electron paramagnetic resonance with high sensitivity in small sample volumes. Most NV-detected NMR (NV-NMR) experiments are performed at low magnetic fields. While low fields are useful in many applications, high-field NV-NMR with fine spectral resolution, high signal sensitivity, and the capability to observe a wider range of nuclei is advantageous for surface detection, microfluidic, and condensed matter studies aimed at probing micro- and nanoscale features. However, only a handful of experiments above 1 T were reported. Herein, we report 13C NV-NMR spectroscopy at 4.2 T, where the NV Larmor frequency is 115 GHz. Using an electron-nuclear double resonance technique, we successfully detect NV-NMR of two diamond samples. The analysis of the NMR linewidth based on the dipolar broadening theory of Van Vleck shows that the observed linewidths from sample 1 are consistent with the intrinsic NMR linewidth of the sample. For sample 2 we find a narrower linewidth of 44 ppm. This work paves the way for new applications of nanoscale NV-NMR.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    