skip to main content


Title: Universal selection of pulled fronts
We establish selection of critical pulled fronts in invasion processes as predicted by the marginal stability conjecture. Our result shows convergence to a pulled front with a logarithmic shift for open sets of steep initial data, including one-sided compactly supported initial conditions. We rely on robust, conceptual assumptions, namely existence and marginal spectral stability of a front traveling at the linear spreading speed and demonstrate that the assumptions hold for open classes of spatially extended systems. Previous results relied on comparison principles or probabilistic tools with implied nonopen conditions on initial data and structure of the equation. Technically, we describe the invasion process through the interaction of a Gaussian leading edge with the pulled front in the wake. Key ingredients are sharp linear decay estimates to control errors in the nonlinear matching and corrections from initial data.  more » « less
Award ID(s):
1907391
NSF-PAR ID:
10349919
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Communications of the American Mathematical Society
Volume:
2
Issue:
5
ISSN:
2692-3688
Page Range / eLocation ID:
172 to 231
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Particle filters avoid parametric estimates for Bayesian posterior densities, which alleviates Gaussian assumptions in nonlinear regimes. These methods, however, are more sensitive to sampling errors than Gaussian-based techniques such as ensemble Kalman filters. A recent study by the authors introduced an iterative strategy for particle filters that match posterior moments—where iterations improve the filter’s ability to draw samples from non-Gaussian posterior densities. The iterations follow from a factorization of particle weights, providing a natural framework for combining particle filters with alternative filters to mitigate the impact of sampling errors. The current study introduces a novel approach to forming an adaptive hybrid data assimilation methodology, exploiting the theoretical strengths of nonparametric and parametric filters. At each data assimilation cycle, the iterative particle filter performs a sequence of updates while the prior sample distribution is non-Gaussian, then an ensemble Kalman filter provides the final adjustment when Gaussian distributions for marginal quantities are detected. The method employs the Shapiro–Wilk test to determine when to make the transition between filter algorithms, which has outstanding power for detecting departures from normality. Experiments using low-dimensional models demonstrate that the approach has a significant value, especially for nonhomogeneous observation networks and unknown model process errors. Moreover, hybrid factors are extended to consider marginals of more than one collocated variables using a test for multivariate normality. Findings from this study motivate the use of the proposed method for geophysical problems characterized by diverse observation networks and various dynamic instabilities, such as numerical weather prediction models. Significance Statement Data assimilation statistically processes observation errors and model forecast errors to provide optimal initial conditions for the forecast, playing a critical role in numerical weather forecasting. The ensemble Kalman filter, which has been widely adopted and developed in many operational centers, assumes Gaussianity of the prior distribution and solves a linear system of equations, leading to bias in strong nonlinear regimes. On the other hand, particle filters avoid many of those assumptions but are sensitive to sampling errors and are computationally expensive. We propose an adaptive hybrid strategy that combines their advantages and minimizes the disadvantages of the two methods. The hybrid particle filter–ensemble Kalman filter is achieved with the Shapiro–Wilk test to detect the Gaussianity of the ensemble members and determine the timing of the transition between these filter updates. Demonstrations in this study show that the proposed method is advantageous when observations are heterogeneous and when the model has an unknown bias. Furthermore, by extending the statistical hypothesis test to the test for multivariate normality, we consider marginals of more than one collocated variable. These results encourage further testing for real geophysical problems characterized by various dynamic instabilities, such as real numerical weather prediction models. 
    more » « less
  2. Abstract

    To understand the mechanisms underlying species coexistence, ecologists often study invasion growth rates of theoretical and data-driven models. These growth rates correspond to average per-capita growth rates of one species with respect to an ergodic measure supporting other species. In the ecological literature, coexistence often is equated with the invasion growth rates being positive. Intuitively, positive invasion growth rates ensure that species recover from being rare. To provide a mathematically rigorous framework for this approach, we prove theorems that answer two questions: (i) When do the signs of the invasion growth rates determine coexistence? (ii) When signs are sufficient, which invasion growth rates need to be positive? We focus on deterministic models and equate coexistence with permanence, i.e., a global attractor bounded away from extinction. For models satisfying certain technical assumptions, we introduce invasion graphs where vertices correspond to proper subsets of species (communities) supporting an ergodic measure and directed edges correspond to potential transitions between communities due to invasions by missing species. These directed edges are determined by the signs of invasion growth rates. When the invasion graph is acyclic (i.e. there is no sequence of invasions starting and ending at the same community), we show that permanence is determined by the signs of the invasion growth rates. In this case, permanence is characterized by the invasibility of all$$-i$$-icommunities, i.e., communities without speciesiwhere all other missing species have negative invasion growth rates. To illustrate the applicability of the results, we show that dissipative Lotka-Volterra models generically satisfy our technical assumptions and computing their invasion graphs reduces to solving systems of linear equations. We also apply our results to models of competing species with pulsed resources or sharing a predator that exhibits switching behavior. Open problems for both deterministic and stochastic models are discussed. Our results highlight the importance of using concepts about community assembly to study coexistence.

     
    more » « less
  3. The principle of convergence stability for geometric flows is the combination of the continuous dependence of the flow on initial conditions, with the stability of fixed points. It implies that if the flow from an initial state g0 exists for all time and converges to a stable fixed point, then the flows of solutions that start near g0 also converge to fixed points. We show this in the case of the Ricci flow, carefully proving the continuous dependence on initial conditions. Symmetry assumptions on initial geometries are often made to simplify geometric flow equations. As an application of our results, we extend known convergence results to open sets of these initial data, which contain geometries with no symmetries. 
    more » « less
  4. Abstract We consider pattern-forming fronts in the complex Ginzburg–Landau equation with a traveling spatial heterogeneity which destabilises, or quenches, the trivial ground state while progressing through the domain. We consider the regime where the heterogeneity propagates with speed c just below the linear invasion speed of the pattern-forming front in the associated homogeneous system. In this situation, the front locks to the interface of the heterogeneity leaving a long intermediate state lying near the unstable ground state, possibly allowing for growth of perturbations. This manifests itself in the spectrum of the linearisation about the front through the accumulation of eigenvalues onto the absolute spectrum associated with the unstable ground state. As the quench speed c increases towards the linear invasion speed, the absolute spectrum stabilises with the same rate at which eigenvalues accumulate onto it allowing us to rigorously establish spectral stability of the front in L 2 ( R ) . The presence of unstable absolute spectrum poses a technical challenge as spatial eigenvalues along the intermediate state no longer admit a hyperbolic splitting and standard tools such as exponential dichotomies are unavailable. Instead, we projectivise the linear flow, and use Riemann surface unfolding in combination with a superposition principle to study the evolution of subspaces as solutions to the associated matrix Riccati differential equation on the Grassmannian manifold. Eigenvalues can then be identified as the roots of the meromorphic Riccati–Evans function, and can be located using winding number and parity arguments. 
    more » « less
  5. Pierre Alquier (Ed.)
    A systematic approach to finding variational approximation in an otherwise intractable non-conjugate model is to exploit the general principle of convex duality by minorizing the marginal likelihood that renders the problem tractable. While such approaches are popular in the context of variational inference in non-conjugate Bayesian models, theoretical guarantees on statistical optimality and algorithmic convergence are lacking. Focusing on logistic regression models, we provide mild conditions on the data generating process to derive non-asymptotic upper bounds to the risk incurred by the variational optima. We demonstrate that these assumptions can be completely relaxed if one considers a slight variation of the algorithm by raising the likelihood to a fractional power. Next, we utilize the theory of dynamical systems to provide convergence guarantees for such algorithms in logistic and multinomial logit regression. In particular, we establish local asymptotic stability of the algorithm without any assumptions on the data-generating process. We explore a special case involving a semi-orthogonal design under which a global convergence is obtained. The theory is further illustrated using several numerical studies. 
    more » « less