Cyber-defense systems are being developed to automatically ingest Cyber Threat Intelligence (CTI) that contains semi-structured data and/or text to populate knowledge graphs. A potential risk is that fake CTI can be generated and spread through Open-Source Intelligence (OSINT) communities or on the Web to effect a data poisoning attack on these systems. Adversaries can use fake CTI examples as training input to subvert cyber defense systems, forcing the model to learn incorrect inputs to serve their malicious needs. In this paper, we automatically generate fake CTI text descriptions using transformers. We show that given an initial prompt sentence, a public language model like GPT-2 with fine-tuning, can generate plausible CTI text with the ability of corrupting cyber-defense systems. We utilize the generated fake CTI text to perform a data poisoning attack on a Cybersecurity Knowledge Graph (CKG) and a cybersecurity corpus. The poisoning attack introduced adverse impacts such as returning incorrect reasoning outputs, representation poisoning, and corruption of other dependent AI-based cyber defense systems. We evaluate with traditional approaches and conduct a human evaluation study with cybersecurity professionals and threat hunters. Based on the study, professional threat hunters were equally likely to consider our fake generated CTI as true.
more »
« less
Counteracting Dark Web Text-Based CAPTCHA with Generative Adversarial Learning for Proactive Cyber Threat Intelligence
Automated monitoring of dark web (DW) platforms on a large scale is the first step toward developing proactive Cyber Threat Intelligence (CTI). While there are efficient methods for collecting data from the surface web, large-scale dark web data collection is often hindered by anti-crawling measures. In particular, text-based CAPTCHA serves as the most prevalent and prohibiting type of these measures in the dark web. Text-based CAPTCHA identifies and blocks automated crawlers by forcing the user to enter a combination of hard-to-recognize alphanumeric characters. In the dark web, CAPTCHA images are meticulously designed with additional background noise and variable character length to prevent automated CAPTCHA breaking. Existing automated CAPTCHA breaking methods have difficulties in overcoming these dark web challenges. As such, solving dark web text-based CAPTCHA has been relying heavily on human involvement, which is labor-intensive and time-consuming. In this study, we propose a novel framework for automated breaking of dark web CAPTCHA to facilitate dark web data collection. This framework encompasses a novel generative method to recognize dark web text-based CAPTCHA with noisy background and variable character length. To eliminate the need for human involvement, the proposed framework utilizes Generative Adversarial Network (GAN) to counteract dark web background noise and leverages an enhanced character segmentation algorithm to handle CAPTCHA images with variable character length. Our proposed framework, DW-GAN, was systematically evaluated on multiple dark web CAPTCHA testbeds. DW-GAN significantly outperformed the state-of-the-art benchmark methods on all datasets, achieving over 94.4% success rate on a carefully collected real-world dark web dataset. We further conducted a case study on an emergent Dark Net Marketplace (DNM) to demonstrate that DW-GAN eliminated human involvement by automatically solving CAPTCHA challenges with no more than three attempts. Our research enables the CTI community to develop advanced, large-scale dark web monitoring. We make DW-GAN code available to the community as an open-source tool in GitHub.
more »
« less
- PAR ID:
- 10336067
- Date Published:
- Journal Name:
- ACM Transactions on Management Information Systems
- Volume:
- 13
- Issue:
- 2
- ISSN:
- 2158-656X
- Page Range / eLocation ID:
- 1 to 21
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Cybersecurity experts have appraised the total global cost of malicious hacking activities to be $450 billion annually. Cyber Threat Intelligence (CTI) has emerged as a viable approach to combat this societal issue. However, existing processes are criticized as inherently reactive to known threats. To combat these concerns, CTI experts have suggested proactively examining emerging threats in the vast, international online hacker community. In this study, we aim to develop proactive CTI capabilities by exploring online hacker forums to identify emerging threats in terms of popularity and tool functionality. To achieve these goals, we create a novel Diachronic Graph Embedding Framework (D-GEF). D-GEF operates on a Graph-of-Words (GoW) representation of hacker forum text to generate word embeddings in an unsupervised manner. Semantic displacement measures adopted from diachronic linguistics literature identify how terminology evolves. A series of benchmark experiments illustrate D-GEF's ability to generate higher quality than state-of-the-art word embedding models (e.g., word2vec) in tasks pertaining to semantic analogy, clustering, and threat classification. D-GEF's practical utility is illustrated with in-depth case studies on web application and denial of service threats targeting PHP and Windows technologies, respectively. We also discuss the implications of the proposed framework for strategic, operational, and tactical CTI scenarios. All datasets and code are publicly released to facilitate scientific reproducibility and extensions of this work.more » « less
-
International dark web platforms operating within multiple geopolitical regions and languages host a myriad of hacker assets such as malware, hacking tools, hacking tutorials, and malicious source code. Cybersecurity analytics organizations employ machine learning models trained on human-labeled data to automatically detect these assets and bolster their situational awareness. However, the lack of human-labeled training data is prohibitive when analyzing foreign-language dark web content. In this research note, we adopt the computational design science paradigm to develop a novel IT artifact for cross-lingual hacker asset detection(CLHAD). CLHAD automatically leverages the knowledge learned from English content to detect hacker assets in non-English dark web platforms. CLHAD encompasses a novel Adversarial deep representation learning (ADREL) method, which generates multilingual text representations using generative adversarial networks (GANs). Drawing upon the state of the art in cross-lingual knowledge transfer, ADREL is a novel approach to automatically extract transferable text representations and facilitate the analysis of multilingual content. We evaluate CLHAD on Russian, French, and Italian dark web platforms and demonstrate its practical utility in hacker asset profiling, and conduct a proof-of-concept case study. Our analysis suggests that cybersecurity managers may benefit more from focusing on Russian to identify sophisticated hacking assets. In contrast, financial hacker assets are scattered among several dominant dark web languages. Managerial insights for security managers are discussed at operational and strategic levels.more » « less
-
Black hat hackers use malicious exploits to circumvent security controls and take advantage of system vulnerabilities worldwide, costing the global economy over $450 billion annually. While many organizations are increasingly turning to cyber threat intelligence (CTI) to help prioritize their vulnerabilities, extant CTI processes are often criticized as being reactive to known exploits. One promising data source that can help develop proactive CTI is the vast and ever-evolving Dark Web. In this study, we adopted the computational design science paradigm to design a novel deep learning (DL)-based exploit-vulnerability attention deep structured semantic model (EVA-DSSM) that includes bidirectional processing and attention mechanisms to automatically link exploits from the Dark Web to vulnerabilities. We also devised a novel device vulnerability severity metric (DVSM) that incorporates the exploit post date and vulnerability severity to help cybersecurity professionals with their device prioritization and risk management efforts. We rigorously evaluated the EVA-DSSM against state-of-the-art non-DL and DL-based methods for short text matching on 52,590 exploit-vulnerability linkages across four testbeds: web application, remote, local, and denial of service. Results of these evaluations indicate that the proposed EVA-DSSM achieves precision at 1 scores 20% - 41% higher than non-DL approaches and 4% - 10% higher than DL-based approaches. We demonstrated the EVA-DSSM’s and DVSM’s practical utility with two CTI case studies: openly accessible systems in the top eight U.S. hospitals and over 20,000 Supervisory Control and Data Acquisition (SCADA) systems worldwide. A complementary user evaluation of the case study results indicated that 45 cybersecurity professionals found the EVA-DSSM and DVSM results more useful for exploit-vulnerability linking and risk prioritization activities than those produced by prevailing approaches. Given the rising cost of cyberattacks, the EVA-DSSM and DVSM have important implications for analysts in security operations centers, incident response teams, and cybersecurity vendors.more » « less
-
Black hat hackers use malicious exploits to circumvent security controls and take advantage of system vulnerabilities worldwide, costing the global economy over $450 billion annually. While many organizations are increasingly turning to cyber threat intelligence (CTI) to help prioritize their vulnerabilities, extant CTI processes are often criticized as being reactive to known exploits. One promising data source that can help develop proactive CTI is the vast and ever-evolving Dark Web. In this study, we adopted the computational design science paradigm to design a novel deep learning (DL)-based exploit-vulnerability attention deep structured semantic model (EVA-DSSM) that includes bidirectional processing and attention mechanisms to automatically link exploits from the Dark Web to vulnerabilities. We also devised a novel device vulnerability severity metric (DVSM) that incorporates the exploit post date and vulnerability severity to help cybersecurity professionals with their device prioritization and risk management efforts. We rigorously evaluated the EVA-DSSM against state-of-the-art non-DL and DL-based methods for short text matching on 52,590 exploit-vulnerability linkages across four testbeds: web application, remote, local, and denial of service. Results of these evaluations indicate that the proposed EVA-DSSM achieves precision at 1 scores 20%-41% higher than non-DL approaches and 4%-10% higher than DL-based approaches. We demonstrated the EVA-DSSM's and DVSM's practical utility with two CTI case studies: openly accessible systems in the top eight U.S. hospitals and over 20,000 Supervisory Control and Data Acquisition (SCADA) systems worldwide. A complementary user evaluation of the case study results indicated that 45 cybersecurity professionals found the EVA-DSSM and DVSM results more useful for exploit-vulnerability linking and risk prioritization activities than those produced by prevailing approaches. Given the rising cost of cyberattacks, the EVA-DSSM and DVSM have important implications for analysts in security operations centers, incident response teams, and cybersecurity vendors.more » « less
An official website of the United States government

