skip to main content


Search for: All records

Award ID contains: 1921485

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Automated monitoring of dark web (DW) platforms on a large scale is the first step toward developing proactive Cyber Threat Intelligence (CTI). While there are efficient methods for collecting data from the surface web, large-scale dark web data collection is often hindered by anti-crawling measures. In particular, text-based CAPTCHA serves as the most prevalent and prohibiting type of these measures in the dark web. Text-based CAPTCHA identifies and blocks automated crawlers by forcing the user to enter a combination of hard-to-recognize alphanumeric characters. In the dark web, CAPTCHA images are meticulously designed with additional background noise and variable character length to prevent automated CAPTCHA breaking. Existing automated CAPTCHA breaking methods have difficulties in overcoming these dark web challenges. As such, solving dark web text-based CAPTCHA has been relying heavily on human involvement, which is labor-intensive and time-consuming. In this study, we propose a novel framework for automated breaking of dark web CAPTCHA to facilitate dark web data collection. This framework encompasses a novel generative method to recognize dark web text-based CAPTCHA with noisy background and variable character length. To eliminate the need for human involvement, the proposed framework utilizes Generative Adversarial Network (GAN) to counteract dark web background noise and leverages an enhanced character segmentation algorithm to handle CAPTCHA images with variable character length. Our proposed framework, DW-GAN, was systematically evaluated on multiple dark web CAPTCHA testbeds. DW-GAN significantly outperformed the state-of-the-art benchmark methods on all datasets, achieving over 94.4% success rate on a carefully collected real-world dark web dataset. We further conducted a case study on an emergent Dark Net Marketplace (DNM) to demonstrate that DW-GAN eliminated human involvement by automatically solving CAPTCHA challenges with no more than three attempts. Our research enables the CTI community to develop advanced, large-scale dark web monitoring. We make DW-GAN code available to the community as an open-source tool in GitHub. 
    more » « less
  2. Black hat hackers use malicious exploits to circumvent security controls and take advantage of system vulnerabilities worldwide, costing the global economy over $450 billion annually. While many organizations are increasingly turning to cyber threat intelligence (CTI) to help prioritize their vulnerabilities, extant CTI processes are often criticized as being reactive to known exploits. One promising data source that can help develop proactive CTI is the vast and ever-evolving Dark Web. In this study, we adopted the computational design science paradigm to design a novel deep learning (DL)-based exploit-vulnerability attention deep structured semantic model (EVA-DSSM) that includes bidirectional processing and attention mechanisms to automatically link exploits from the Dark Web to vulnerabilities. We also devised a novel device vulnerability severity metric (DVSM) that incorporates the exploit post date and vulnerability severity to help cybersecurity professionals with their device prioritization and risk management efforts. We rigorously evaluated the EVA-DSSM against state-of-the-art non-DL and DL-based methods for short text matching on 52,590 exploit-vulnerability linkages across four testbeds: web application, remote, local, and denial of service. Results of these evaluations indicate that the proposed EVA-DSSM achieves precision at 1 scores 20% - 41% higher than non-DL approaches and 4% - 10% higher than DL-based approaches. We demonstrated the EVA-DSSM’s and DVSM’s practical utility with two CTI case studies: openly accessible systems in the top eight U.S. hospitals and over 20,000 Supervisory Control and Data Acquisition (SCADA) systems worldwide. A complementary user evaluation of the case study results indicated that 45 cybersecurity professionals found the EVA-DSSM and DVSM results more useful for exploit-vulnerability linking and risk prioritization activities than those produced by prevailing approaches. Given the rising cost of cyberattacks, the EVA-DSSM and DVSM have important implications for analysts in security operations centers, incident response teams, and cybersecurity vendors. 
    more » « less
  3. International dark web platforms operating within multiple geopolitical regions and languages host a myriad of hacker assets such as malware, hacking tools, hacking tutorials, and malicious source code. Cybersecurity analytics organizations employ machine learning models trained on human-labeled data to automatically detect these assets and bolster their situational awareness. However, the lack of human-labeled training data is prohibitive when analyzing foreign-language dark web content. In this research note, we adopt the computational design science paradigm to develop a novel IT artifact for cross-lingual hacker asset detection(CLHAD). CLHAD automatically leverages the knowledge learned from English content to detect hacker assets in non-English dark web platforms. CLHAD encompasses a novel Adversarial deep representation learning (ADREL) method, which generates multilingual text representations using generative adversarial networks (GANs). Drawing upon the state of the art in cross-lingual knowledge transfer, ADREL is a novel approach to automatically extract transferable text representations and facilitate the analysis of multilingual content. We evaluate CLHAD on Russian, French, and Italian dark web platforms and demonstrate its practical utility in hacker asset profiling, and conduct a proof-of-concept case study. Our analysis suggests that cybersecurity managers may benefit more from focusing on Russian to identify sophisticated hacking assets. In contrast, financial hacker assets are scattered among several dominant dark web languages. Managerial insights for security managers are discussed at operational and strategic levels. 
    more » « less
  4. Black hat hackers use malicious exploits to circumvent security controls and take advantage of system vulnerabilities worldwide, costing the global economy over $450 billion annually. While many organizations are increasingly turning to cyber threat intelligence (CTI) to help prioritize their vulnerabilities, extant CTI processes are often criticized as being reactive to known exploits. One promising data source that can help develop proactive CTI is the vast and ever-evolving Dark Web. In this study, we adopted the computational design science paradigm to design a novel deep learning (DL)-based exploit-vulnerability attention deep structured semantic model (EVA-DSSM) that includes bidirectional processing and attention mechanisms to automatically link exploits from the Dark Web to vulnerabilities. We also devised a novel device vulnerability severity metric (DVSM) that incorporates the exploit post date and vulnerability severity to help cybersecurity professionals with their device prioritization and risk management efforts. We rigorously evaluated the EVA-DSSM against state-of-the-art non-DL and DL-based methods for short text matching on 52,590 exploit-vulnerability linkages across four testbeds: web application, remote, local, and denial of service. Results of these evaluations indicate that the proposed EVA-DSSM achieves precision at 1 scores 20%-41% higher than non-DL approaches and 4%-10% higher than DL-based approaches. We demonstrated the EVA-DSSM's and DVSM's practical utility with two CTI case studies: openly accessible systems in the top eight U.S. hospitals and over 20,000 Supervisory Control and Data Acquisition (SCADA) systems worldwide. A complementary user evaluation of the case study results indicated that 45 cybersecurity professionals found the EVA-DSSM and DVSM results more useful for exploit-vulnerability linking and risk prioritization activities than those produced by prevailing approaches. Given the rising cost of cyberattacks, the EVA-DSSM and DVSM have important implications for analysts in security operations centers, incident response teams, and cybersecurity vendors. 
    more » « less
  5. Hacker forums provide malicious actors with a large database of tutorials, goods, and assets to leverage for cyber-attacks. Careful research of these forums can provide tremendous benefit to the cybersecurity community through trend identification and exploit categorization. This study aims to provide a novel static word embedding, Hack2Vec, to improve performance on hacker forum classification tasks. Our proposed Hack2Vec model distills contextual representations from the seminal pre-trained language model BERT to a continuous bag-of-words model to create a highly targeted hacker forum static word embedding. The results of our experimental design indicate that Hack2Vec improves performance over prominent embeddings in accuracy, precision, recall, and F1-score for a benchmark hacker forum classification task. 
    more » « less
  6. Cybercrime was estimated to cost the global economy $945 billion in 2020. Increasingly, law enforcement agencies are using social network analysis (SNA) to identify key hackers from Dark Web hacker forums for targeted investigations. However, past approaches have primarily focused on analyzing key hackers at a single point in time and use a hacker’s structural features only. In this study, we propose a novel Hacker Evolution Identification Framework to identify how hackers evolve within hacker forums. The proposed framework has two novelties in its design. First, the framework captures features such as user statistics, node-level metrics, lexical measures, and post style, when representing each hacker with unsupervised graph embedding methods. Second, the framework incorporates mechanisms to align embedding spaces across multiple time-spells of data to facilitate analysis of how hackers evolve over time. Two experiments were conducted to assess the performance of prevailing graph embedding algorithms and nodal feature variations in the task of graph reconstruction in five timespells. Results of our experiments indicate that Text- Associated Deep-Walk (TADW) with all of the proposed nodal features outperforms methods without nodal features in terms of Mean Average Precision in each time-spell. We illustrate the potential practical utility of the proposed framework with a case study on an English forum with 51,612 posts. The results produced by the framework in this case study identified key hackers posting piracy assets. 
    more » « less
  7. Malicious cyber activities impose substantial costs on the U.S. economy and global markets. Cyber-criminals often use information-sharing social media platforms such as paste sites (e.g., Pastebin) to share vast amounts of plain text content related to Personally Identifiable Information (PII), credit card numbers, exploit code, malware, and other sensitive content. Paste sites can provide targeted Cyber Threat Intelligence (CTI) about potential threats and prior breaches. In this research, we propose a novel Bidirectional Encoder Representation from Transformers (BERT) with Latent Dirichlet Allocation (LDA) model to categorize pastes automatically. Our proposed BERTLDA model leverages a neural network transformer architecture to capture sequential dependencies when representing each sentence in a paste. BERT-LDA replaces the Bag-of-Words (BoW) approach in the conventional LDA with a Bag-of-Labels (BoL) that encompasses class labels at the sequence level. We compared the performance of the proposed BERT-LDA against the conventional LDA and BERT-LDA variants (e.g., GPT2-LDA) on 4,254,453 pastes from three paste sites. Experiment results indicate that the proposed BERT-LDA outperformed the standard LDA and each BERT-LDA variant in terms of perplexity on each paste site. Results of our BERTLDA case study suggest that significant content relating to hacker community activities, malicious code, network and website vulnerabilities, and PII are shared on paste sites. The insights provided by this study could be used by organizations to proactively mitigate potential damage on their infrastructure. 
    more » « less
  8. null (Ed.)
  9. null (Ed.)
  10. null (Ed.)