skip to main content

This content will become publicly available on June 1, 2023

Title: Cross-Lingual Cybersecurity Analytics in the International Dark Web with Adversarial Deep Representation Learning
International dark web platforms operating within multiple geopolitical regions and languages host a myriad of hacker assets such as malware, hacking tools, hacking tutorials, and malicious source code. Cybersecurity analytics organizations employ machine learning models trained on human-labeled data to automatically detect these assets and bolster their situational awareness. However, the lack of human-labeled training data is prohibitive when analyzing foreign-language dark web content. In this research note, we adopt the computational design science paradigm to develop a novel IT artifact for cross-lingual hacker asset detection(CLHAD). CLHAD automatically leverages the knowledge learned from English content to detect hacker assets in non-English dark web platforms. CLHAD encompasses a novel Adversarial deep representation learning (ADREL) method, which generates multilingual text representations using generative adversarial networks (GANs). Drawing upon the state of the art in cross-lingual knowledge transfer, ADREL is a novel approach to automatically extract transferable text representations and facilitate the analysis of multilingual content. We evaluate CLHAD on Russian, French, and Italian dark web platforms and demonstrate its practical utility in hacker asset profiling, and conduct a proof-of-concept case study. Our analysis suggests that cybersecurity managers may benefit more from focusing on Russian to identify sophisticated hacking assets. In contrast, financial more » hacker assets are scattered among several dominant dark web languages. Managerial insights for security managers are discussed at operational and strategic levels. « less
Authors:
; ; ;
Award ID(s):
1921485
Publication Date:
NSF-PAR ID:
10355738
Journal Name:
MIS quarterly
Volume:
46
Issue:
2
Page Range or eLocation-ID:
1209-1226
ISSN:
0276-7783
Sponsoring Org:
National Science Foundation
More Like this
  1. The regularity of devastating cyber-attacks has made cybersecurity a grand societal challenge. Many cybersecurity professionals are closely examining the international Dark Web to proactively pinpoint potential cyber threats. Despite its potential, the Dark Web contains hundreds of thousands of non-English posts. While machine translation is the prevailing approach to process non-English text, applying MT on hacker forum text results in mistranslations. In this study, we draw upon Long-Short Term Memory (LSTM), Cross-Lingual Knowledge Transfer (CLKT), and Generative Adversarial Networks (GANs) principles to design a novel Adversarial CLKT (A-CLKT) approach. A-CLKT operates on untranslated text to retain the original semantics of the language and leverages the collective knowledge about cyber threats across languages to create a language invariant representation without any manual feature engineering or external resources. Three experiments demonstrate how A-CLKT outperforms state-of-the-art machine learning, deep learning, and CLKT algorithms in identifying cyber-threats in French and Russian forums.
  2. Modern NLP applications have enjoyed a great boost utilizing neural networks models. Such deep neural models, however, are not applicable to most human languages due to the lack of annotated training data for various NLP tasks. Cross-lingual transfer learning (CLTL) is a viable method for building NLP models for a low-resource target language by leveraging labeled data from other (source) languages. In this work, we focus on the multilingual transfer setting where training data in multiple source languages is leveraged to further boost target language performance. Unlike most existing methods that rely only on language-invariant features for CLTL, our approach coherently utilizes both language invariant and language-specific features at instance level. Our model leverages adversarial networks to learn language-invariant features, and mixture-of-experts models to dynamically exploit the similarity between the target language and each individual source language1. This enables our model to learn effectively what to share between various languages in the multilingual setup. Moreover, when coupled with unsupervised multilingual embeddings, our model can operate in a zero-resource setting where neither target language training data nor cross-lingual resources are available. Our model achieves significant performance gains over prior art, as shown in an extensive set of experiments over multiple textmore »classification and sequence tagging.« less
  3. Sentiment classification typically relies on a large amount of labeled data. In practice, the availability of labels is highly imbalanced among different languages, e.g., more English texts are labeled than texts in any other languages, which creates a considerable inequality in the quality of related information services received by users speaking different languages. To tackle this problem, cross-lingual sentiment classification approaches aim to transfer knowledge learned from one language that has abundant labeled examples (i.e., the source language, usually English) to another language with fewer labels (i.e., the target language). The source and the target languages are usually bridged through off-the-shelf machine translation tools. Through such a channel, cross-language sentiment patterns can be successfully learned from English and transferred into the target languages. This approach, however, often fails to capture sentiment knowledge specific to the target language, and thus compromises the accuracy of the downstream classification task. In this paper, we employ emojis, which are widely available in many languages, as a new channel to learn both the cross-language and the language-specific sentiment patterns. We propose a novel representation learning method that uses emoji prediction as an instrument to learn respective sentiment-aware representations for each language. The learned representations aremore »then integrated to facilitate cross-lingual sentiment classification. The proposed method demonstrates state-of-the-art performance on benchmark datasets, which is sustained even when sentiment labels are scarce.« less
  4. Cybercrime was estimated to cost the global economy $945 billion in 2020. Increasingly, law enforcement agencies are using social network analysis (SNA) to identify key hackers from Dark Web hacker forums for targeted investigations. However, past approaches have primarily focused on analyzing key hackers at a single point in time and use a hacker’s structural features only. In this study, we propose a novel Hacker Evolution Identification Framework to identify how hackers evolve within hacker forums. The proposed framework has two novelties in its design. First, the framework captures features such as user statistics, node-level metrics, lexical measures, and post style, when representing each hacker with unsupervised graph embedding methods. Second, the framework incorporates mechanisms to align embedding spaces across multiple time-spells of data to facilitate analysis of how hackers evolve over time. Two experiments were conducted to assess the performance of prevailing graph embedding algorithms and nodal feature variations in the task of graph reconstruction in five timespells. Results of our experiments indicate that Text- Associated Deep-Walk (TADW) with all of the proposed nodal features outperforms methods without nodal features in terms of Mean Average Precision in each time-spell. We illustrate the potential practical utility of the proposed frameworkmore »with a case study on an English forum with 51,612 posts. The results produced by the framework in this case study identified key hackers posting piracy assets.« less
  5. Detecting fine-grained differences in content conveyed in different languages matters for cross-lingual NLP and multilingual corpora analysis, but it is a challenging machine learning problem since annotation is expensive and hard to scale. This work improves the prediction and annotation of fine-grained semantic divergences. We introduce a training strategy for multilingual BERT models by learning to rank synthetic divergent examples of varying granularity. We evaluate our models on the Rationalized English-French Semantic Divergences, a new dataset released with this work, consisting of English-French sentence-pairs annotated with semantic divergence classes and token-level rationales. Learning to rank helps detect fine-grained sentence-level divergences more accurately than a strong sentence-level similarity model, while token-level predictions have the potential of further distinguishing between coarse and fine-grained divergences.