skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: MagNet: A Neural Network for Directed Graphs
The prevalence of graph-based data has spurred the rapid development of graph neural networks (GNNs) and related machine learning algorithms. Yet, despite the many datasets naturally modeled as directed graphs, including citation, website, and traffic networks, the vast majority of this research focuses on undirected graphs. In this paper, we propose MagNet, a GNN for directed graphs based on a complex Hermitian matrix known as the magnetic Laplacian. This matrix encodes undirected geometric structure in the magnitude of its entries and directional information in their phase. A charge parameter attunes spectral information to variation among directed cycles. We apply our network to a variety of directed graph node classification and link prediction tasks showing that MagNet performs well on all tasks and that its performance exceeds all other methods on a majority of such tasks. The underlying principles of MagNet are such that it can be adapted to other GNN architectures.  more » « less
Award ID(s):
1845856
PAR ID:
10336166
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Ranzato, M.; Beygelzimer, A.; Dauphin, Y.; Liang, P.S.; Vaughan, J. Wortman
Date Published:
Journal Name:
Advances in neural information processing systems
Volume:
34
ISSN:
1049-5258
Page Range / eLocation ID:
27003 - 27015
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper describes a group-level classification of 14 patients with prefrontal cortex (pFC) lesions from 20 healthy controls using multi-layer graph convolutional networks (GCN) with features inferred from the scalp EEG recorded from the encoding phase of working memory (WM) trials. We first construct undirected and directed graphs to represent the WM encoding for each trial for each subject using distance correlation- based functional connectivity measures and differential directed information-based effective connectivity measures, respectively. Centrality measures of betweenness centrality, eigenvector centrality, and closeness centrality are inferred for each of the 64 channels from the brain connectivity. Along with the three centrality measures, each graph uses the relative band powers in the five frequency bands - delta, theta, alpha, beta, and gamma- as node features. The summarized graph representation is learned using two layers of GCN followed by mean pooling, and fully connected layers are used for classification. The final class label for a subject is decided using majority voting based on the results from all the subject's trials. The GCN-based model can correctly classify 28 of the 34 subjects (82.35% accuracy) with undirected edges represented by functional connectivity measure of distance correlation and classify all 34 subjects (100% accuracy) with directed edges characterized by effective connectivity measure of differential directed information. 
    more » « less
  2. Markov Chain Monte Carlo (MCMC) has been the de facto technique for sampling and inference of large graphs such as online social networks. At the heart of MCMC lies the ability to construct an ergodic Markov chain that attains any given stationary distribution \pi, often in the form of random walks or crawling agents on the graph. Most of the works around MCMC, however, presume that the graph is undirected or has reciprocal edges, and become inapplicable when the graph is directed and non-reciprocal. Here we develop a similar framework for directed graphs called Non- Markovian Monte Carlo (NMMC) by establishing a mapping to convert \pi into the quasi-stationary distribution of a carefully constructed transient Markov chain on an extended state space. As applications, we demonstrate how to achieve any given distribution \pi on a directed graph and estimate the eigenvector centrality using a set of non-Markovian, history-dependent random walks on the same graph in a distributed manner.We also provide numerical results on various real-world directed graphs to confirm our theoretical findings, and present several practical enhancements to make our NMMC method ready for practical use inmost directed graphs. To the best of our knowledge, the proposed NMMC framework for directed graphs is the first of its kind, unlocking all the limitations set by the standard MCMC methods for undirected graphs. 
    more » « less
  3. This paper provides a framework to evaluate the performance of single and double integrator networks over arbitrary directed graphs. Adopting vehicular network terminology, we consider quadratic performance metrics defined by the L2-norm of position and velocity based response functions given impulsive inputs to each vehicle. We exploit the spectral properties of weighted graph Laplacians and output performance matrices to derive a novel method of computing the closed-form solutions for this general class of performance metrics, which include H2-norm based quantities as special cases. We then explore the effect of the interplay between network properties (such as edge directionality and connectivity) and the control strategy on the overall network performance. More precisely, for systems whose interconnection is described by graphs with normal Laplacian L, we characterize the role of directionality by comparing their performance with that of their undirected counterparts, represented by the Hermitian part of L. We show that, for single-integrator networks, directed and undirected graphs perform identically. However, for double-integrator networks, graph directionality -expressed by the eigenvalues of L with nonzero imaginary part- can significantly degrade performance. Interestingly, in many cases, well-designed feedback can also exploit directionality to mitigate degradation or even improve the performance to exceed that of the undirected case. Finally we focus on a system coherence metric -aggregate deviation from the state average- to investigate the relationship between performance and degree of connectivity, leading to somewhat surprising findings. For example, increasing the number of neighbors on a ω-nearest neighbor directed graph does not necessarily improve performance. Similarly, we demonstrate equivalence in performance between all-to-one and all-to-all communication graphs. 
    more » « less
  4. null (Ed.)
    Graph neural networks (GNNs) are important tools for transductive learning tasks, such as node classification in graphs, due to their expressive power in capturing complex interdependency between nodes. To enable GNN learning, existing works typically assume that labeled nodes, from two or multiple classes, are provided, so that a discriminative classifier can be learned from the labeled data. In reality, this assumption might be too restrictive for applications, as users may only provide labels of interest in a single class for a small number of nodes. In addition, most GNN models only aggregate information from short distances ( e.g. , 1-hop neighbors) in each round, and fail to capture long-distance relationship in graphs. In this article, we propose a novel GNN framework, long-short distance aggregation networks, to overcome these limitations. By generating multiple graphs at different distance levels, based on the adjacency matrix, we develop a long-short distance attention model to model these graphs. The direct neighbors are captured via a short-distance attention mechanism, and neighbors with long distance are captured by a long-distance attention mechanism. Two novel risk estimators are further employed to aggregate long-short-distance networks, for PU learning and the loss is back-propagated for model learning. Experimental results on real-world datasets demonstrate the effectiveness of our algorithm. 
    more » « less
  5. null (Ed.)
    Sampling of various types of acyclic orientations of chordal graphs plays a central role in several AI applications. In this work we investigate the use of the recently proposed general partial rejection sampling technique of Guo, Jerrum, and Liu, based on the Lovasz Local Lemma, for sampling partial acyclic orientations. For a given undirected graph, an acyclic orientation is an assignment of directions to all of its edges so that there is no directed cycle. In partial orientations some edges are allowed to be undirected. We show how the technique can be used to sample partial acyclic orientations of chordal graphs fast and with a clearly specified underlying distribution. This is in contrast to other samplers of various acyclic orientations with running times exponentially dependent on the maximum degree of the graph. 
    more » « less