The oxygen reduction reaction (ORR) is a critical process in energy conversion systems, influencing the efficiency and performance of various devices such as fuel cells, batteries, and electrolyzers. Perovskite-supported metal materials (metal/perovskite) offer several advantages as ORR electrocatalysts, including strong metal-support interactions, oxygen vacancy formation in the perovskite lattice, and synergistic triple-phase boundary (TPB) activity at the interface. Despite their significance, the mechanistic understanding of ORR on metal/perovskite catalysts remains incomplete, particularly at metal/perovskite interfaces. This study investigates ORR on BaZrO3 (BZO) perovskite-supported metal clusters (Pt or Ag) using density functional theory (DFT) to unravel critical insights into charge redistribution at the metal/BZO interface. Energy profiles for elemental steps along two different ORR pathways—oxygen adsorption on the metal cluster surface and direct oxygen adsorption at the TPB—were calculated to explore the effects of different active sites. The results provide a deeper understanding of ORR on metal/perovskite catalysts, emphasizing the role of interfacial interactions and pathway-dependent reaction mechanisms. This work paves the way for guiding the design of high-performance electrocatalysts for ORR in terms of composition, interface design, and local environment modification for a broad range of energy applications.
more »
« less
Bottom-Up Synthesis Strategies Enabling the Investigation of Metal Catalyst-Carbon Support Interactions
The structural versatility and vibrant surface chemistry of carbon materials offer tremendous opportunities for tailoring the catalytic performance of supported metal nanoparticles through the modulation of interfacial metal-support interactions (MSI). MSI’s geometric and structural effects are well documented for these materials. However, other potential support effects such as electronic metal-carbon interactions remain poorly understood. Such limitations are tied to constraints intrinsic to commonly available carbon materials such as activated carbon (e.g., microporosity) and the top-down approach that is often used for their synthesis. Nonetheless, it is crucial to understand the interplay between the structure, properties, and performance of carbon-supported metal catalysts to take steps toward rationalizing their design. The present study investigates promising and scalable bottom-up synthesis approaches, namely hydrothermal carbonization (HTC) and evaporation-induced self-assembly (EISA), that offer great flexibility for controlling the carbon structure. The opportunities and limitations of the methods are discussed with a particular focus on harnessing the power of oxygen functionalities. A remarkable production yield of 32.8% was achieved for mesoporous carbons synthesized via EISA. Moreover, these carbon materials present similar external surface areas of 316 ± 19 m2/g and average pore sizes of 10.0 ± 0.1 nm while offering flexibility to control the oxygen concentration in the range of 5–26 wt%. This study provides the cornerstone for future investigations of metal-carbon support interactions and the rational design of these catalysts.
more »
« less
- PAR ID:
- 10336638
- Date Published:
- Journal Name:
- C
- Volume:
- 8
- Issue:
- 3
- ISSN:
- 2311-5629
- Page Range / eLocation ID:
- 37
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract For global deployment of proton exchange membrane fuel cells, achieving optimal interaction between the components of the cathode active layer remains challenging. Studies addressing the effect of nanoparticle location (inside vs outside of pores) on performance and durability mostly compare porous and nonporous carbon supports, thus coming short of decoupling nanoparticle locality from carbon support effects. To address the influence of nanoparticle locality on performance and durability, new carbon‐supported electrocatalysts with designed and distinct nanoparticle localities are presented. The developed methodology allows to place Pt nanoparticles preferentially inside or outside of the mesopores of conductive carbon supports from materials under development at Cabot Corporation. Synthesis protocols are tuned to control nanoparticle size, crystallinity, and loading; this way the effect of Pt locality can be studied for two experimental carbon supports in isolation from all other parameters. For one carbon support, Pt active surface area and activity are significantly lower when nanoparticles are placed inside the pores. In contrast, for another, more graphitic carbon support, placing nanoparticles inside or outside of the carbon pores produces no appreciable difference in active surface area and performance rotating disk electrode measurements. Given their carefully tailored structure, these catalysts provide a framework for evaluating locality‐performance‐durability relationships.more » « less
-
Abstract Single atoms of select transition metals supported on carbon substrates have emerged as a unique system for electrocatalysis because of maximal atom utilization (≈100%) and high efficiency for a range of reactions involved in electrochemical energy conversion and storage, such as the oxygen reduction, oxygen evolution, hydrogen evolution, and CO2reduction reactions. Herein, the leading strategies for the preparation of single atom catalysts are summarized, and the electrocatalytic performance of the resulting samples for the various reactions is discussed. In general, the carbon substrate not only provides a stabilizing matrix for the metal atoms, but also impacts the electronic density of the metal atoms due to strong interfacial interactions, which may lead to the formation of additional active sites by the adjacent carbon atoms and hence enhanced electrocatalytic activity. This necessitates a detailed understanding of the material structures at the atomic level, a critical step in the construction of a relevant structural model for theoretical simulations and calculations. Finally, a perspective is included highlighting the promises and challenges for the future development of carbon‐supported single atom catalysts in electrocatalysis.more » « less
-
Nitrogen doping in carbon materials can modify the employed carbon material’s electronic and structural properties, which helps in creating a stronger metal-support interaction. In this study, the role of nitrogen doping in improving the durability of Pt catalysts supported on a three-dimensional vertically aligned carbon nanofiber (VACNF) array towards oxygen reduction reaction (ORR) was explored. The nitrogen moieties present in the N-VACNF enhanced the metal-support interaction and contributed to a reduction in the Pt particle size from 3.1 nm to 2.3 nm. The Pt/N-VACNF catalyst showed better durability when compared to Pt/VACNF and Pt/C catalysts with similar Pt loading. DFT calculations validated the increase in the durability of the Pt NPs with an increase in pyridinic N and corroborated the molecular ORR pathway for Pt/N-VACNF. Moreover, the Pt/N-VACNF catalyst was found to have excellent tolerance towards methanol crossover.more » « less
-
Abstract Supported nanoparticles are broadly employed in industrial catalytic processes, where the active sites can be tuned by metal-support interactions (MSIs). Although it is well accepted that supports can modify the chemistry of metal nanoparticles, systematic utilization of MSIs for achieving desired catalytic performance is still challenging. The developments of supports with appropriate chemical properties and identification of the resulting active sites are the main barriers. Here, we develop two-dimensional transition metal carbides (MXenes) supported platinum as efficient catalysts for light alkane dehydrogenations. Ordered Pt 3 Ti and surface Pt 3 Nb intermetallic compound nanoparticles are formed via reactive metal-support interactions on Pt/Ti 3 C 2 T x and Pt/Nb 2 CT x catalysts, respectively. MXene supports modulate the nature of the active sites, making them highly selective toward C–H activation. Such exploitation of the MSIs makes MXenes promising platforms with versatile chemical reactivity and tunability for facile design of supported intermetallic nanoparticles over a wide range of compositions and structures.more » « less
An official website of the United States government

