skip to main content


Title: A Zero-One Law for Uniform Diophantine Approximation in Euclidean Norm
Abstract We study a norm-sensitive Diophantine approximation problem arising from the work of Davenport and Schmidt on the improvement of Dirichlet’s theorem. Its supremum norm case was recently considered by the 1st-named author and Wadleigh [ 17], and here we extend the set-up by replacing the supremum norm with an arbitrary norm. This gives rise to a class of shrinking target problems for one-parameter diagonal flows on the space of lattices, with the targets being neighborhoods of the critical locus of the suitably scaled norm ball. We use methods from geometry of numbers to generalize a result due to Andersen and Duke [ 1] on measure zero and uncountability of the set of numbers (in some cases, matrices) for which Minkowski approximation theorem can be improved. The choice of the Euclidean norm on $\mathbb{R}^2$ corresponds to studying geodesics on a hyperbolic surface, which visit a decreasing family of balls. An application of the dynamical Borel–Cantelli lemma of Maucourant [ 25] produces, given an approximation function $\psi $, a zero-one law for the set of $\alpha \in \mathbb{R}$ such that for all large enough $t$ the inequality $\left (\frac{\alpha q -p}{\psi (t)}\right )^2 + \left (\frac{q}{t}\right )^2 < \frac{2}{\sqrt{3}}$ has non-trivial integer solutions.  more » « less
Award ID(s):
1900560
NSF-PAR ID:
10336676
Author(s) / Creator(s):
;
Date Published:
Journal Name:
International Mathematics Research Notices
Volume:
2022
Issue:
8
ISSN:
1073-7928
Page Range / eLocation ID:
5617 to 5657
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Given a sequence $\{Z_d\}_{d\in \mathbb{N}}$ of smooth and compact hypersurfaces in ${\mathbb{R}}^{n-1}$, we prove that (up to extracting subsequences) there exists a regular definable hypersurface $\Gamma \subset {\mathbb{R}}\textrm{P}^n$ such that each manifold $Z_d$ is diffeomorphic to a component of the zero set on $\Gamma$ of some polynomial of degree $d$. (This is in sharp contrast with the case when $\Gamma$ is semialgebraic, where for example the homological complexity of the zero set of a polynomial $p$ on $\Gamma$ is bounded by a polynomial in $\deg (p)$.) More precisely, given the above sequence of hypersurfaces, we construct a regular, compact, semianalytic hypersurface $\Gamma \subset {\mathbb{R}}\textrm{P}^{n}$ containing a subset $D$ homeomorphic to a disk, and a family of polynomials $\{p_m\}_{m\in \mathbb{N}}$ of degree $\deg (p_m)=d_m$ such that $(D, Z(p_m)\cap D)\sim ({\mathbb{R}}^{n-1}, Z_{d_m}),$ i.e. the zero set of $p_m$ in $D$ is isotopic to $Z_{d_m}$ in ${\mathbb{R}}^{n-1}$. This says that, up to extracting subsequences, the intersection of $\Gamma$ with a hypersurface of degree $d$ can be as complicated as we want. We call these ‘pathological examples’. In particular, we show that for every $0 \leq k \leq n-2$ and every sequence of natural numbers $a=\{a_d\}_{d\in \mathbb{N}}$ there is a regular, compact semianalytic hypersurface $\Gamma \subset {\mathbb{R}}\textrm{P}^n$, a subsequence $\{a_{d_m}\}_{m\in \mathbb{N}}$ and homogeneous polynomials $\{p_{m}\}_{m\in \mathbb{N}}$ of degree $\deg (p_m)=d_m$ such that (0.1)$$\begin{equation}b_k(\Gamma\cap Z(p_m))\geq a_{d_m}.\end{equation}$$ (Here $b_k$ denotes the $k$th Betti number.) This generalizes a result of Gwoździewicz et al. [13]. On the other hand, for a given definable $\Gamma$ we show that the Fubini–Study measure, in the Gaussian probability space of polynomials of degree $d$, of the set $\Sigma _{d_m,a, \Gamma }$ of polynomials verifying (0.1) is positive, but there exists a constant $c_\Gamma$ such that $$\begin{equation*}0<{\mathbb{P}}(\Sigma_{d_m, a, \Gamma})\leq \frac{c_{\Gamma} d_m^{\frac{n-1}{2}}}{a_{d_m}}.\end{equation*}$$ This shows that the set of ‘pathological examples’ has ‘small’ measure (the faster $a$ grows, the smaller the measure and pathologies are therefore rare). In fact we show that given $\Gamma$, for most polynomials a Bézout-type bound holds for the intersection $\Gamma \cap Z(p)$: for every $0\leq k\leq n-2$ and $t>0$: $$\begin{equation*}{\mathbb{P}}\left(\{b_k(\Gamma\cap Z(p))\geq t d^{n-1} \}\right)\leq \frac{c_\Gamma}{td^{\frac{n-1}{2}}}.\end{equation*}$$

     
    more » « less
  2. Abstract

    We consider integral area-minimizing 2-dimensional currents$T$Tin$U\subset \mathbf {R}^{2+n}$UR2+nwith$\partial T = Q\left [\!\![{\Gamma }\right ]\!\!]$T=QΓ, where$Q\in \mathbf {N} \setminus \{0\}$QN{0}and$\Gamma $Γis sufficiently smooth. We prove that, if$q\in \Gamma $qΓis a point where the density of$T$Tis strictly below$\frac{Q+1}{2}$Q+12, then the current is regular at$q$q. The regularity is understood in the following sense: there is a neighborhood of$q$qin which$T$Tconsists of a finite number of regular minimal submanifolds meeting transversally at$\Gamma $Γ(and counted with the appropriate integer multiplicity). In view of well-known examples, our result is optimal, and it is the first nontrivial generalization of a classical theorem of Allard for$Q=1$Q=1. As a corollary, if$\Omega \subset \mathbf {R}^{2+n}$ΩR2+nis a bounded uniformly convex set and$\Gamma \subset \partial \Omega $ΓΩa smooth 1-dimensional closed submanifold, then any area-minimizing current$T$Twith$\partial T = Q \left [\!\![{\Gamma }\right ]\!\!]$T=QΓis regular in a neighborhood of $\Gamma $Γ.

     
    more » « less
  3. Abstract The goal of this paper is to generalise, refine and improve results on large intersections from [2, 8]. We show that if G is a countable discrete abelian group and $\varphi , \psi : G \to G$ are homomorphisms, such that at least two of the three subgroups $\varphi (G)$ , $\psi (G)$ and $(\psi -\varphi )(G)$ have finite index in G , then $\{\varphi , \psi \}$ has the large intersections property . That is, for any ergodic measure preserving system $\textbf {X}=(X,\mathcal {X},\mu ,(T_g)_{g\in G})$ , any $A\in \mathcal {X}$ and any $\varepsilon>0$ , the set $$ \begin{align*} \{g\in G : \mu(A\cap T_{\varphi(g)}^{-1} A \cap T_{\psi(g)}^{-1} A)>\mu(A)^3-\varepsilon\} \end{align*} $$ is syndetic (Theorem 1.11). Moreover, in the special case where $\varphi (g)=ag$ and $\psi (g)=bg$ for $a,b\in \mathbb {Z}$ , we show that we only need one of the groups $aG$ , $bG$ or $(b-a)G$ to be of finite index in G (Theorem 1.13), and we show that the property fails, in general, if all three groups are of infinite index (Theorem 1.14). One particularly interesting case is where $G=(\mathbb {Q}_{>0},\cdot )$ and $\varphi (g)=g$ , $\psi (g)=g^2$ , which leads to a multiplicative version of the Khintchine-type recurrence result in [8]. We also completely characterise the pairs of homomorphisms $\varphi ,\psi $ that have the large intersections property when $G = {{\mathbb Z}}^2$ . The proofs of our main results rely on analysis of the structure of the universal characteristic factor for the multiple ergodic averages $$ \begin{align*} \frac{1}{|\Phi_N|} \sum_{g\in \Phi_N}T_{\varphi(g)}f_1\cdot T_{\psi(g)} f_2. \end{align*} $$ In the case where G is finitely generated, the characteristic factor for such averages is the Kronecker factor . In this paper, we study actions of groups that are not necessarily finitely generated, showing, in particular, that, by passing to an extension of $\textbf {X}$ , one can describe the characteristic factor in terms of the Conze–Lesigne factor and the $\sigma $ -algebras of $\varphi (G)$ and $\psi (G)$ invariant functions (Theorem 4.10). 
    more » « less
  4. Abstract

    We show that the energy conditions are not necessary for boundedness of Riesz transforms in dimension $n\geq 2$. In dimension $n=1$, we construct an elliptic singular integral operator $H_{\flat } $ for which the energy conditions are not necessary for boundedness of $H_{\flat }$. The convolution kernel $K_{\flat }\left ( x\right ) $ of the operator $H_{\flat }$ is a smooth flattened version of the Hilbert transform kernel $K\left ( x\right ) =\frac{1}{x}$ that satisfies ellipticity $ \vert K_{\flat }\left ( x\right ) \vert \gtrsim \frac{1}{\left \vert x\right \vert }$, but not gradient ellipticity $ \vert K_{\flat }^{\prime }\left ( x\right ) \vert \gtrsim \frac{1}{ \vert x \vert ^{2}}$. Indeed the kernel has flat spots where $K_{\flat }^{\prime }\left ( x\right ) =0$ on a family of intervals, but $K_{\flat }^{\prime }\left ( x\right ) $ is otherwise negative on $\mathbb{R}\setminus \left \{ 0\right \} $. On the other hand, if a one-dimensional kernel $K\left ( x,y\right ) $ is both elliptic and gradient elliptic, then the energy conditions are necessary, and so by our theorem in [30], the $T1$ theorem holds for such kernels on the line. This paper includes results from arXiv:16079.06071v3 and arXiv:1801.03706v2.

     
    more » « less
  5. An \ell _p oblivious subspace embedding is a distribution over r \times n matrices \Pi such that for any fixed n \times d matrix A , \[ \Pr _{\Pi }[\textrm {for all }x, \ \Vert Ax\Vert _p \le \Vert \Pi Ax\Vert _p \le \kappa \Vert Ax\Vert _p] \ge 9/10,\] where r is the dimension of the embedding, \kappa is the distortion of the embedding, and for an n -dimensional vector y , \Vert y\Vert _p = (\sum _{i=1}^n |y_i|^p)^{1/p} is the \ell _p -norm. Another important property is the sparsity of \Pi , that is, the maximum number of non-zero entries per column, as this determines the running time of computing \Pi A . While for p = 2 there are nearly optimal tradeoffs in terms of the dimension, distortion, and sparsity, for the important case of 1 \le p \lt 2 , much less was known. In this article, we obtain nearly optimal tradeoffs for \ell _1 oblivious subspace embeddings, as well as new tradeoffs for 1 \lt p \lt 2 . Our main results are as follows: (1) We show for every 1 \le p \lt 2 , any oblivious subspace embedding with dimension r has distortion \[ \kappa = \Omega \left(\frac{1}{\left(\frac{1}{d}\right)^{1 / p} \log ^{2 / p}r + \left(\frac{r}{n}\right)^{1 / p - 1 / 2}}\right).\] When r = {\operatorname{poly}}(d) \ll n in applications, this gives a \kappa = \Omega (d^{1/p}\log ^{-2/p} d) lower bound, and shows the oblivious subspace embedding of Sohler and Woodruff (STOC, 2011) for p = 1 is optimal up to {\operatorname{poly}}(\log (d)) factors. (2) We give sparse oblivious subspace embeddings for every 1 \le p \lt 2 . Importantly, for p = 1 , we achieve r = O(d \log d) , \kappa = O(d \log d) and s = O(\log d) non-zero entries per column. The best previous construction with s \le {\operatorname{poly}}(\log d) is due to Woodruff and Zhang (COLT, 2013), giving \kappa = \Omega (d^2 {\operatorname{poly}}(\log d)) or \kappa = \Omega (d^{3/2} \sqrt {\log n} \cdot {\operatorname{poly}}(\log d)) and r \ge d \cdot {\operatorname{poly}}(\log d) ; in contrast our r = O(d \log d) and \kappa = O(d \log d) are optimal up to {\operatorname{poly}}(\log (d)) factors even for dense matrices. We also give (1) \ell _p oblivious subspace embeddings with an expected 1+\varepsilon number of non-zero entries per column for arbitrarily small \varepsilon \gt 0 , and (2) the first oblivious subspace embeddings for 1 \le p \lt 2 with O(1) -distortion and dimension independent of n . Oblivious subspace embeddings are crucial for distributed and streaming environments, as well as entrywise \ell _p low-rank approximation. Our results give improved algorithms for these applications. 
    more » « less