Abstract Hausel and Rodriguez-Villegas (2015, Astérisque 370, 113–156) recently observed that work of Göttsche, combined with a classical result of Erdös and Lehner on integer partitions, implies that the limiting Betti distribution for the Hilbert schemes $$(\mathbb {C}^{2})^{[n]}$$ on $$n$$ points, as $$n\rightarrow +\infty ,$$ is a Gumbel distribution . In view of this example, they ask for further such Betti distributions. We answer this question for the quasihomogeneous Hilbert schemes $$((\mathbb {C}^{2})^{[n]})^{T_{\alpha ,\beta }}$$ that are cut out by torus actions. We prove that their limiting distributions are also of Gumbel type. To obtain this result, we combine work of Buryak, Feigin, and Nakajima on these Hilbert schemes with our generalization of the result of Erdös and Lehner, which gives the distribution of the number of parts in partitions that are multiples of a fixed integer $$A\geq 2.$$ Furthermore, if $$p_{k}(A;n)$$ denotes the number of partitions of $$n$$ with exactly $$k$$ parts that are multiples of $$A$$ , then we obtain the asymptotic $$ \begin{align*} p_{k}(A,n)\sim \frac{24^{\frac k2-\frac14}(n-Ak)^{\frac k2-\frac34}}{\sqrt2\left(1-\frac1A\right)^{\frac k2-\frac14}k!A^{k+\frac12}(2\pi)^{k}}e^{2\pi\sqrt{\frac1{6}\left(1-\frac1A\right)(n-Ak)}}, \end{align*} $$ a result which is of independent interest.
more »
« less
Distributions on partitions arising from Hilbert schemes and hook lengths
Abstract Recent works at the interface of algebraic combinatorics, algebraic geometry, number theory and topology have provided new integer-valued invariants on integer partitions. It is natural to consider the distribution of partitions when sorted by these invariants in congruence classes. We consider the prominent situations that arise from extensions of the Nekrasov–Okounkov hook product formula and from Betti numbers of various Hilbert schemes of n points on $${\mathbb {C}}^2$$ . For the Hilbert schemes, we prove that homology is equidistributed as $$n\to \infty $$ . For t -hooks, we prove distributions that are often not equidistributed. The cases where $$t\in \{2, 3\}$$ stand out, as there are congruence classes where such counts are zero. To obtain these distributions, we obtain analytic results of independent interest. We determine the asymptotics, near roots of unity, of the ubiquitous infinite products $$ \begin{align*}F_1(\xi; q):=\prod_{n=1}^{\infty}\left(1-\xi q^n\right), \ \ \ F_2(\xi; q):=\prod_{n=1}^{\infty}\left(1-(\xi q)^n\right) \ \ \ {\mathrm{and}}\ \ \ F_3(\xi; q):=\prod_{n=1}^{\infty}\left(1-\xi^{-1}(\xi q)^n\right). \end{align*} $$
more »
« less
- Award ID(s):
- 2055118
- PAR ID:
- 10404462
- Date Published:
- Journal Name:
- Forum of Mathematics, Sigma
- Volume:
- 10
- ISSN:
- 2050-5094
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We prove an inequality that unifies previous works of the authors on the properties of the Radon transform on convex bodies including an extension of the Busemann–Petty problem and a slicing inequality for arbitrary functions. Let $$K$$ and $$L$$ be star bodies in $${\mathbb R}^n,$$ let $0<k<n$ be an integer, and let $f,g$ be non-negative continuous functions on $$K$$ and $$L$$, respectively, so that $$\|g\|_\infty =g(0)=1.$$ Then $$\begin{align*} & \frac{\int_Kf}{\left(\int_L g\right)^{\frac{n-k}n}|K|^{\frac kn}} \le \frac n{n-k} \left(d_{\textrm{ovr}}(K,\mathcal{B}\mathcal{P}_k^n)\right)^k \max_{H} \frac{\int_{K\cap H} f}{\int_{L\cap H} g}, \end{align*}$$where $|K|$ stands for volume of proper dimension, $$C$$ is an absolute constant, the maximum is taken over all $(n-k)$-dimensional subspaces of $${\mathbb R}^n,$$ and $$d_{\textrm{ovr}}(K,\mathcal{B}\mathcal{P}_k^n)$$ is the outer volume ratio distance from $$K$$ to the class of generalized $$k$$-intersection bodies in $${\mathbb R}^n.$$ Another consequence of this result is a mean value inequality for the Radon transform. We also obtain a generalization of the isomorphic version of the Shephard problem.more » « less
-
Abstract The distribution of natural frequencies of the Euler–Bernoulli beam subject to fully non-dissipative boundary conditions is investigated. The beam is clamped at the left end and equipped with a 4-parameter ($$\alpha ,\beta ,k_1,k_2$$) linear boundary feedback law at the right end. The $$2 \times 2$$ boundary feedback matrix relates the control input (a vector of velocity and its spatial derivative at the right end), to the output (a vector of shear and moment at the right end). The initial boundary value problem describing the dynamics of the beam has been reduced to the first order in time evolution equation in the state Hilbert space equipped with the energy norm. The dynamics generator has a purely discrete spectrum (the vibrational modes) denoted by $$\{\nu _n\}_{n\in \mathbb {Z}^{\prime}}$$. The role of the control parameters is examined and the following results have been proven: (i) when $$\beta \neq 0$$, the set of vibrational modes is asymptotically close to the vertical line on the complex $$\nu$$-plane given by the equation $$\Re \nu = \alpha + (1-k_1k_2)/\beta$$; (ii) when $$\beta = 0$$ and the parameter $$K = (1-k_1 k_2)/(k_1+k_2)$$ is such that $$\left |K\right |\neq 1$$ then the following relations are valid: $$\Re (\nu _n/n) = O\left (1\right )$$ and $$\Im (\nu _n/n^2) = O\left (1\right )$$ as $$\left |n\right |\to \infty$$; (iii) when $$\beta =0$$, $|K| = 1$, and $$\alpha = 0$$, then the following relations are valid: $$\Re (\nu _n/n^2) = O\left (1\right )$$ and $$\Im (\nu _n/n) = O\left (1\right )$$ as $$\left |n\right |\to \infty$$; (iv) when $$\beta =0$$, $|K| = 1$, and $$\alpha>0$$, then the following relations are valid: $$\Re (\nu _n/\ln \left |n\right |) = O\left (1\right )$$ and $$\Im (\nu _n/n^2) = O\left (1\right )$$ as $$\left |n\right |\to \infty$$.more » « less
-
Abstract In this paper, we study the largest eigenvalues of sample covariance matrices with elliptically distributed data. We consider the sample covariance matrix $$Q=YY^{*},$$ where the data matrix $$Y \in \mathbb{R}^{p \times n}$$ contains i.i.d. $$p$$-dimensional observations $$\textbf{y}_{i}=\xi _{i}T\textbf{u}_{i},\;i=1,\dots ,n.$$ Here $$\textbf{u}_{i}$$ is distributed on the unit sphere, $$\xi _{i} \sim \xi $$ is some random variable that is independent of $$\textbf{u}_{i}$$ and $$T^{*}T=\varSigma $$ is some deterministic positive definite matrix. Under some mild regularity assumptions on $$\varSigma ,$$ assuming $$\xi ^{2}$$ has bounded support and certain decay behaviour near its edge so that the limiting spectral distribution of $$Q$$ has a square root decay behaviour near the spectral edge, we prove that the Tracy–Widom law holds for the largest eigenvalues of $$Q$$ when $$p$$ and $$n$$ are comparably large. Based on our results, we further construct some useful statistics to detect the signals when they are corrupted by high dimensional elliptically distributed noise.more » « less
-
We study the Hilbert scheme\mathrm{Hilb}_{d}(\mathbf{A}^{\infty})from an\mathbf{A}^{1}-homotopical viewpoint and obtain applications to algebraic K-theory. We show that the Hilbert scheme\mathrm{Hilb}_{d}(\mathbf{A}^{\infty})is\mathbf{A}^{1}-equivalent to the Grassmannian of(d-1)-planes in\mathbf{A}^{\infty}. We then describe the\mathbf{A}^{1}-homotopy type of\mathrm{Hilb}_{d}(\mathbf{A}^{n})in a certain range, fornlarge compared tod. For example, we compute the integral cohomology of\mathrm{Hilb}_{d}(\mathbf{A}^{n})(\mathbf{C})in a range. We also deduce that the forgetful map\mathcal{FF}\mathrm{lat}\to\mathcal{V}\mathrm{ect}from the moduli stack of finite locally free schemes to that of finite locally free sheaves is an\mathbf{A}^{1}-equivalence after group completion. This implies that the moduli stack\mathcal{FF}\mathrm{lat}, viewed as a presheaf with framed transfers, is a model for the effective motivic spectrum\mathrm{kgl}representing algebraic K-theory. Combining our techniques with the recent work of Bachmann, we obtain Hilbert scheme models for the\mathrm{kgl}-homology of smooth proper schemes over a perfect field.more » « less
An official website of the United States government

