skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 16, 2026

Title: Graduate STEM students as role models for high school students
IntroductionSTEM graduates are important to U.S. research development and innovation, adding diverse perspectives and talents to communities and the academy, and enhancing the financial stability of universities. Graduate STEM students’ work on funded research occasionally engages them in outreach opportunities with K-12 schools and students. Yet, few graduate students participate in professional development that prepares them for these roles. MethodsThis exploratory, descriptive case study chronicles the experiences of eight graduate STEM students (six international and two domestic) who visited high school classrooms, via Zoom, as part of a federally funded sustainability project. This study investigated the factors graduate STEM students considered most important when planning and implementing their Zoom outreach visits, what they perceived as the supports, benefits, and challenges, and in what ways their Zoom visits and reflections correspond to the Motivational Theory of Role Modeling. ResultsThe findings demonstrate graduate students’ focus on engaging students, the relevance of science to society, and job opportunities in STEM fields. Graduate students perceived challenges associated with making the complex academic language and research understandable to high school students and felt supported by university team members and high school teachers. DiscussionImplications for role models and professional development for graduate STEM students are discussed, along with novel contributions to the theoretical framework.  more » « less
Award ID(s):
2134664
PAR ID:
10656280
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Frontier
Date Published:
Journal Name:
Frontiers in Education
Volume:
10
ISSN:
2504-284X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A research and mentoring program was developed to provide local first-generation students, students returning to school after a professional experience, and underrepresented minority students resources and relationships to guide them toward a STEM degree from a four-year university. A multi-tiered mentoring community was formed including direct mentoring from graduate students and faculty advisors, peer mentoring among undergraduate students from different colleges and universities, and high school students to increase the accessibility of research opportunities for this demographic. Local students were recruited from Northwest Arkansas Community College and Upward Bound to combine community college and high school students in a novel manner. The programs were integrated whenever possible to emphasize peer mentoring, including mentoring lunches, research meetings, presentation sessions, conference presentations, and professional development mentoring sessions. ResultsOn the post-program survey, students indicated the community formed in the program supported their STEM identity development, provided them with quality relationships, and developed skills valuable to completion of a STEM degree. This identity development was further evidenced by the students presenting their work at a conference and obtaining additional research positions after the summer program ended. The post-program scores and continued efforts of different demographics of students to pursue STEM highlight the versatility of the multi-tiered mentoring community model to serve students from different ages, backgrounds, and demographics. 
    more » « less
  2. IntroductionDespite efforts to increase the participation of marginalized students in Science, Technology, Engineering, and Mathematics (STEM), neurodivergent students have remained underrepresented and underserved in STEM graduate programs. This qualitative study aims to increase understanding of the experiences of neurodivergent graduate students pursuing advanced degrees in STEM. In this analysis, we consider how common graduate school experiences interface with the invisibility of neurological diversity, thus contributing to a set of unique challenges experienced by neurodivergent students. Materials and methodsIn this qualitative study, 10 focus group sessions were conducted to examine the experiences of 18 students who identify as neurodivergent in graduate STEM programs at a large, research-intensive (R1) university. We used thematic analysis of the transcripts from these focus groups to identify three overarching themes within the data. ResultsThe findings are presented through a novel model for understanding neurodivergent graduate STEM student experiences. The findings suggest that students who identify as neurodivergent feel pressure to conform to perceived neurotypical norms to avoid negative perceptions. They also may self-silence to maintain stability within the advisor-advisee relationship. The stigma associated with disability labels contributes a heavy cognitive and emotional load as students work to mask neurodiversity-related traits, navigate decisions about disclosure of their neurodivergence, and ultimately, experience significant mental health challenges and burnout. Despite these many challenges, the neurodivergent graduate students in this study perceived aspects of their neurodivergence as a strength. DiscussionThe findings may have implications for current and future graduate students, for graduate advisors who may or may not be aware of their students’ neurodivergence, and for program administrators who influence policies that impact the wellbeing and productivity of neurodivergent students. 
    more » « less
  3. Abstract To help foster interest in science, technology, engineering, and math (STEM), it is important to develop opportunities that excite and teach young minds about STEM-related fields. Over the past several years, our university-based research group has sought to help grow excitement around the biomechanics and biomedical engineering fields. The purposes of this technical brief are to (1) discuss the development of a partnership built between a St. Louis area high school and biomechanics research lab and (2) provide practical guidance for other researchers looking to implement a long-term outreach program. The partnership uses three different outreach opportunities. The first opportunity consisted of 12th-grade students visiting university research labs for an up-close perspective of ongoing biomedical research. The second opportunity was a biomedical research showcase where research-active graduate students traveled to the high school to perform demonstrations. The third opportunity consisted of a collaborative capstone project where a high school student was able to carry out research directly in a university lab. To date, we have expanded our reach from 19 students to interacting with over 100 students, which has yielded increased interest in STEM related research. Our postprogram survey showed that outreach programs such as the one described herein can increase interest in STEM within all ages of high school students. Building partnerships between high schools and university researchers increases the interest in STEM amongst high school students, and gives graduate students an outlet to present work to an eager-to-learn audience. 
    more » « less
  4. IntroductionRecent efforts including the U.S. Department of Education’sRaise the Bar: STEM Excellence for All Students, designed to strengthen Science, Technology, Engineering and Mathematics (STEM) education, typify the development of effective outreach programs implemented in high school settings to increase STEM achievement and literacy and to promote future careers in STEM. Specifically, artificial intelligence (AI) and machine learning (ML) are topics of great importance and interest but are often reserved for higher-level education. Introductions of complex subjects in high school promotes student efficacy, enthusiasm, and skill-development for STEM careers. Establishing strong partnerships between universities and high schools is mutually beneficial for the professional development of students, teachers, and professors. In this paper, we detail immersive outreach efforts and their effectiveness in a high school setting. MethodsFrom Spring 2021 to Spring 2024, we conducted eight data-science and analysis-coding style workshops along with two data science units, with 302 students participating in the data science workshops and 82 students in the data science units. All students who participated in the data science lessons completed a comprehensive final project. Surveys measuring knowledge and appeal to data science and coding were conducted both retrospectively and prospectively, before and after each workshop and the data science units. A 1 year follow up survey was conducted for students in the 2023 data science lessons (n= 23). ResultsOverall, average student interest significantly increased from 2.72 ± 1.08/5.0 (n= 205) to 3.15 ± 1.18/5.0 (n= 181,p= 0.001) during the data science workshops, while 70% of students expressed desire to continue with coding. Interest modestly increased in the data science lessons from 3.15 ± 0.65/4.0 to 3.17 ± 0.77/4.0 (n= 82,p= 0.8571), while knowledge significantly increased from 64.16% to 88.5% (% correct out of six questions) in the 2023 data science lessons and from 52.62% to 60.79% (% correct out of 29 questions) in the 2024 data science lessons. DiscussionIncreasing STEM exposure through outreach programs and a modified curriculum can positively alter students’ career trajectory and prepare them for the evolving technologically advanced world and the careers within it. 
    more » « less
  5. Abstract BackgroundGiven high attrition rates and lack of interest in faculty careers, it is crucial to understand how doctoral engineering students conceptualize academia and academic careers. Purpose/HypothesisThis study aims to characterize the development of academic disenchantment among engineering students who have considered departure from their doctoral programs. Schema theory was used to explore how students develop and evolve in their conceptualizations of academia through their lived experiences. Design/MethodData were collected from 42 graduate students from research‐intensive universities across the United States who participated in qualitative, semi‐structured interviews investigating expectations for graduate school, experiences, attrition and persistence considerations, and career trajectories. The transcripts were thematically analyzed through open and axial coding to understand how students constructed their schemas of the academy. FindingsExperiences and quotations of four participants are presented to describe the results of the transcripts. Participants' misaligned expectations of their graduate program's values and practices, coupled with a lack of agency and support, led them to see their graduate programs as antagonistic to their short‐ and long‐term career success. Even for students who may likely persist through to PhD degree completion, the development of disenchantment dissuades students—even those who once desired a faculty career—from interest in the academy. ConclusionsBy understanding how disenchantment arose in our participants' experiences, we better understand how to equip students with resources that will help them navigate graduate programs. This research advances the literature by identifying underutilized opportunities to prepare students to cope with the challenges of engineering doctoral education. 
    more » « less