skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Common preperiodic points for quadratic polynomials
Let \begin{document}$$ f_c(z) = z^2+c $$\end{document} for \begin{document}$$ c \in {\mathbb C} $$\end{document}. We show there exists a uniform upper bound on the number of points in \begin{document}$$ {\mathbb P}^1( {\mathbb C}) $$\end{document} that can be preperiodic for both \begin{document}$$ f_{c_1} $$\end{document} and \begin{document}$$ f_{c_2} $$\end{document}, for any pair \begin{document}$$ c_1\not = c_2 $$\end{document} in \begin{document}$$ {\mathbb C} $$\end{document}. The proof combines arithmetic ingredients with complex-analytic: we estimate an adelic energy pairing when the parameters lie in \begin{document}$$ \overline{\mathbb{Q}} $$\end{document}, building on the quantitative arithmetic equidistribution theorem of Favre and Rivera-Letelier, and we use distortion theorems in complex analysis to control the size of the intersection of distinct Julia sets. The proofs are effective, and we provide explicit constants for each of the results.  more » « less
Award ID(s):
2050037
PAR ID:
10454885
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Modern Dynamics
Volume:
18
Issue:
0
ISSN:
1930-5311
Page Range / eLocation ID:
363
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Any \begin{document}$ C^d $$\end{document} conservative map \begin{document}$$ f $$\end{document} of the \begin{document}$$ d $$\end{document}-dimensional unit ball \begin{document}$$ {\mathbb B}^d $$\end{document}, \begin{document}$$ d\geq 2 $$\end{document}, can be realized by renormalized iteration of a \begin{document}$$ C^d $$\end{document} perturbation of identity: there exists a conservative diffeomorphism of \begin{document}$$ {\mathbb B}^d $$\end{document}, arbitrarily close to identity in the \begin{document}$$ C^d $$\end{document} topology, that has a periodic disc on which the return dynamics after a \begin{document}$$ C^d $$\end{document} change of coordinates is exactly \begin{document}$$ f $$\end{document}$. 
    more » « less
  2. This paper investigates the global existence of weak solutions for the incompressible \begin{document}$ p $$\end{document}-Navier-Stokes equations in \begin{document}$$ \mathbb{R}^d $$\end{document} \begin{document}$$ (2\leq d\leq p) $$\end{document}. The \begin{document}$$ p $$\end{document}-Navier-Stokes equations are obtained by adding viscosity term to the \begin{document}$$ p $$\end{document}-Euler equations. The diffusion added is represented by the \begin{document}$$ p $$\end{document}-Laplacian of velocity and the \begin{document}$$ p $$\end{document}-Euler equations are derived as the Euler-Lagrange equations for the action represented by the Benamou-Brenier characterization of Wasserstein-\begin{document}$$ p $$\end{document}$ distances with constraint density to be characteristic functions. 
    more » « less
  3. Consider the linear transport equation in 1D under an external confining potential \begin{document}$$ \Phi $$\end{document}: \begin{document}$$ \begin{equation*} {\partial}_t f + v {\partial}_x f - {\partial}_x \Phi {\partial}_v f = 0. \end{equation*} $$\end{document} For \begin{document}$$ \Phi = \frac {x^2}2 + \frac { \varepsilon x^4}2 $$\end{document} (with \begin{document}$$ \varepsilon >0 $$\end{document} small), we prove phase mixing and quantitative decay estimates for \begin{document}$$ {\partial}_t \varphi : = - \Delta^{-1} \int_{ \mathbb{R}} {\partial}_t f \, \mathrm{d} v $$\end{document}, with an inverse polynomial decay rate \begin{document}$$ O({\langle} t{\rangle}^{-2}) $$\end{document}. In the proof, we develop a commuting vector field approach, suitably adapted to this setting. We will explain why we hope this is relevant for the nonlinear stability of the zero solution for the Vlasov–Poisson system in \begin{document}$ 1 $$\end{document}D under the external potential \begin{document}$$ \Phi $$\end{document}$. 
    more » « less
  4. In this paper, we propose a new class of operator factorization methods to discretize the integral fractional Laplacian \begin{document}$$ (- \Delta)^\frac{{ \alpha}}{{2}} $$\end{document} for \begin{document}$$ \alpha \in (0, 2) $$\end{document}. One main advantage is that our method can easily increase numerical accuracy by using high-degree Lagrange basis functions, but remain its scheme structure and computer implementation unchanged. Moreover, it results in a symmetric (multilevel) Toeplitz differentiation matrix, enabling efficient computation via the fast Fourier transforms. If constant or linear basis functions are used, our method has an accuracy of \begin{document}$$ {\mathcal O}(h^2) $$\end{document}, while \begin{document}$$ {\mathcal O}(h^4) $$\end{document} for quadratic basis functions with \begin{document}$ h $$\end{document} a small mesh size. This accuracy can be achieved for any \begin{document}$$ \alpha \in (0, 2) $$\end{document} and can be further increased if higher-degree basis functions are chosen. Numerical experiments are provided to approximate the fractional Laplacian and solve the fractional Poisson problems. It shows that if the solution of fractional Poisson problem satisfies \begin{document}$$ u \in C^{m, l}(\bar{ \Omega}) $$\end{document} for \begin{document}$$ m \in {\mathbb N} $$\end{document} and \begin{document}$$ 0 < l < 1 $$\end{document}, our method has an accuracy of \begin{document}$$ {\mathcal O}(h^{\min\{m+l, \, 2\}}) $$\end{document} for constant and linear basis functions, while \begin{document}$$ {\mathcal O}(h^{\min\{m+l, \, 4\}}) $$\end{document}$ for quadratic basis functions. Additionally, our method can be readily applied to approximate the generalized fractional Laplacians with symmetric kernel function, and numerical study on the tempered fractional Poisson problem demonstrates its efficiency. 
    more » « less
  5. This paper introduces a novel generative encoder (GE) framework for generative imaging and image processing tasks like image reconstruction, compression, denoising, inpainting, deblurring, and super-resolution. GE unifies the generative capacity of GANs and the stability of AEs in an optimization framework instead of stacking GANs and AEs into a single network or combining their loss functions as in existing literature. GE provides a novel approach to visualizing relationships between latent spaces and the data space. The GE framework is made up of a pre-training phase and a solving phase. In the former, a GAN with generator \begin{document}$ G $$\end{document} capturing the data distribution of a given image set, and an AE network with encoder \begin{document}$$ E $$\end{document} that compresses images following the estimated distribution by \begin{document}$$ G $$\end{document} are trained separately, resulting in two latent representations of the data, denoted as the generative and encoding latent space respectively. In the solving phase, given noisy image \begin{document}$$ x = \mathcal{P}(x^*) $$\end{document}, where \begin{document}$$ x^* $$\end{document} is the target unknown image, \begin{document}$$ \mathcal{P} $$\end{document} is an operator adding an addictive, or multiplicative, or convolutional noise, or equivalently given such an image \begin{document}$$ x $$\end{document} in the compressed domain, i.e., given \begin{document}$$ m = E(x) $$\end{document}, the two latent spaces are unified via solving the optimization problem \begin{document}$$ z^* = \underset{z}{\mathrm{argmin}} \|E(G(z))-m\|_2^2+\lambda\|z\|_2^2 $$\end{document} and the image \begin{document}$$ x^* $$\end{document} is recovered in a generative way via \begin{document}$$ \hat{x}: = G(z^*)\approx x^* $$\end{document}, where \begin{document}$$ \lambda>0 $$\end{document}$ is a hyperparameter. The unification of the two spaces allows improved performance against corresponding GAN and AE networks while visualizing interesting properties in each latent space. 
    more » « less