A<sc>bstract</sc> We study 3d quantum gravity with two asymptotically anti-de Sitter regions, in particular, using its relation with coupled Alekseev-Shatashvili theories and Liouville theory. Expressions for the Hartle-Hawking state, thermal 2n-point functions, torus wormhole correlators and Wheeler-DeWitt wavefunctions in different bases are obtained using the ZZ boundary states in Liouville theory. Exact results in 2d Jackiw-Teitelboim (JT) gravity are uplifted to 3d gravity, with two copies of Liouville theory in 3d gravity playing a similar role as Schwarzian theory in JT gravity. The connection between 3d gravity and the Liouville ZZ boundary states are manifested by viewing BTZ black holes as Maldacena-Maoz wormholes, with the two wormhole boundaries glued along the ZZ boundaries. In this work, we also study the factorization problem of the Hartle-Hawking state in 3d gravity. With the relevant defect operator that imposes the necessary topological constraint for contractibility, the trace formula in gravity is modified in computing the entanglement entropy. This trace matches with the one from von Neumann algebra considerations, further reproducing the Bekenstein-Hawking area formula from entanglement entropy. Lastly, we propose a calculation for off-shell geometrical quantities that are responsible for the ramp behavior in the late time two-point functions, which follows from the understanding of the Liouville FZZT boundary states in the context of 3d gravity, and the identification between Verlinde loop operators in Liouville theory and “baby universe” operators in 3d gravity.
more »
« less
Jackiw-Teitelboim and Kantowski-Sachs quantum cosmology
Abstract We study quantum cosmology of the 2DJackiw-Teitelboim (JT) gravity with Λ > 0 and calculate the Hartle-Hawking (HH) wave function for this model in the minisuperspace framework. Our approach is guided by the observation that the JT dynamics can be mapped exactly onto that of the Kantowski-Sachs (KS) model describing a homogeneous universe with spatial sections ofS1×S2topology. This allows us to establish a JT-KS correspondence between the wave functions of the models. We obtain the semiclassical Hartle-Hawking wave function by evaluating the path integral with appropriate boundary conditions and employing the methods of Picard-Lefschetz theory. The JT-KS connection formulas allow us to translate this result to JT gravity, define the HH wave function and obtain a probability distribution for the dilaton field.
more »
« less
- Award ID(s):
- 2110466
- PAR ID:
- 10336768
- Publisher / Repository:
- JCAP
- Date Published:
- Journal Name:
- Journal of Cosmology and Astroparticle Physics
- Volume:
- 2022
- Issue:
- 03
- ISSN:
- 1475-7516
- Page Range / eLocation ID:
- 056
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A<sc>bstract</sc> We propose a new model of low dimensional de Sitter holography in the form of a pair of double-scaled SYK models at infinite temperature coupled via an equal energy constraintHL=HR. As a test of the duality, we compute the two-point function between two dressed SYK operators$$ {\mathcal{O}}_{\Delta } $$ that preserve the constraint. We find that in the largeNlimit, the two-point function precisely matches with the Green’s function of a massive scalar field of mass squaredm2= 4∆(1 – ∆) in a 3D de Sitter space-time with radiusRdS/GN= 4πN/p2. In this correspondence, the SYK time is identified with the proper time difference between the two operators. We introduce a candidate gravity dual of the doubled SYK model given by a JT/de Sitter gravity model obtained via a circle reduction from 3D Einstein-de Sitter gravity. We comment on the physical meaning of the finite de Sitter temperature and entropy.more » « less
-
Abstract β‐lactams are a chemically diverse group of molecules with a wide range of biological activities. Having recently observed curious trends in2JHHcoupling values in studies on this structural class, we sought to obtain a more comprehensive understanding of these diagnostic NMR parameters, specifically interrogating1JCH,2JCH, and2JHH, to differentiate 3‐ and 4‐monosubstituted β‐lactams. Further investigation using computational chemistry methods was employed to explore the geometric and electronic origins for the observed and calculated differences between the two substitution patterns.more » « less
-
Abstract Quasi‐random vertical displacement fluctuations, caused by the spectrum of non‐breaking gravity waves, mix the atmosphere, similar to turbulence, which induces significant vertical transport of heat and constituents in the upper atmosphere. Multi‐decade observations of temperature, made between 85 and 100 km with a Na lidar at Colorado State University (CSU, 40.6°N, 105.1°W), are used to derive the seasonal variations of the wave‐induced thermal (KH) and constituent (KWave) diffusivities. Both show strong annual oscillations with maxima in winter, which increase with increasing altitude.KHandKWaveexhibit summer minima of ∼40 and ∼70 m2s−1, respectively, that are approximately constant with altitude. In winter,KHvaries from ∼50 at 85 to ∼180 m2s−1at 100 km, whileKWavevaries from ∼110 at 85 to ∼340 m2s−1at 100 km. These values are much larger than the eddy diffusivity (Kzz∼ 35 m2s−1) predicted for this site by the Whole Atmosphere Community Climate Model. The CSU diffusivities are comparable to similar measurements made at other mid‐latitude mountain sites in both hemispheres, and derived from global observations of atomic O. However, the seasonal variations differ from the O observations, which may reflect differences in wave sources at these sites and the different approaches employed to derive the wave diffusivities. Even so, the CSU results demonstrate that heat and constituent transport by unresolved, non‐breaking gravity waves are important processes that need to be incorporated in global chemistry models to properly characterize the thermal and constituent structure of the upper atmosphere.more » « less
-
A<sc>bstract</sc> We propose an algebra of operators along an observer’s worldline as a background-independent algebra in quantum gravity. In that context, it is natural to think of the Hartle-Hawking no boundary state as a universal state of maximum entropy, and to define entropy in terms of the relative entropy with this state. In the case that the only spacetimes considered correspond to de Sitter vacua with different values of the cosmological constant, this definition leads to sensible results.more » « less
An official website of the United States government

