skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On ℓ p -Gaussian–Grothendieck Problem
Abstract For $$p\geq 1$$ and $$(g_{ij})_{1\leq i,j\leq n}$$ being a matrix of i.i.d. standard Gaussian entries, we study the $$n$$-limit of the $$\ell _p$$-Gaussian–Grothendieck problem defined as $$\begin{align*} & \max\Bigl\{\sum_{i,j=1}^n g_{ij}x_ix_j: x\in \mathbb{R}^n,\sum_{i=1}^n |x_i|^p=1\Bigr\}. \end{align*}$$The case $p=2$ corresponds to the top eigenvalue of the Gaussian orthogonal ensemble; when $$p=\infty $$, the maximum value is essentially the ground state energy of the Sherrington–Kirkpatrick mean-field spin glass model and its limit can be expressed by the famous Parisi formula. In the present work, we focus on the cases $$1\leq p<2$$ and $$2<p<\infty .$$ For the former, we compute the limit of the $$\ell _p$$-Gaussian–Grothendieck problem and investigate the structure of the set of all near optimizers along with stability estimates. In the latter case, we show that this problem admits a Parisi-type variational representation and the corresponding optimizer is weakly delocalized in the sense that its entries vanish uniformly in a polynomial order of $$n^{-1}$$.  more » « less
Award ID(s):
1752184
PAR ID:
10336967
Author(s) / Creator(s):
;
Date Published:
Journal Name:
International Mathematics Research Notices
ISSN:
1073-7928
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Let $$1\leq p \leq q <\infty $$ and let $$w \in \mathbb{C}$$. Weissler conjectured that the Hermite operator $$e^{w\Delta }$$ is bounded as an operator from $$L^{p}$$ to $$L^{q}$$ on the Hamming cube $$\{-1,1\}^{n}$$ with the norm bound independent of $$n$$ if and only if $$\begin{align*} |p-2-e^{2w}(q-2)|\leq p-|e^{2w}|q. \end{align*}$$It was proved in [ 1], [ 2], and [ 17] in all cases except $$2<p\leq q <3$$ and $$3/2<p\leq q <2$$, which stood open until now. The goal of this paper is to give a full proof of Weissler’s conjecture in the case $p=q$. Several applications will be presented. 
    more » « less
  2. An \ell _p oblivious subspace embedding is a distribution over r \times n matrices \Pi such that for any fixed n \times d matrix A , \[ \Pr _{\Pi }[\textrm {for all }x, \ \Vert Ax\Vert _p \le \Vert \Pi Ax\Vert _p \le \kappa \Vert Ax\Vert _p] \ge 9/10,\] where r is the dimension of the embedding, \kappa is the distortion of the embedding, and for an n -dimensional vector y , \Vert y\Vert _p = (\sum _{i=1}^n |y_i|^p)^{1/p} is the \ell _p -norm. Another important property is the sparsity of \Pi , that is, the maximum number of non-zero entries per column, as this determines the running time of computing \Pi A . While for p = 2 there are nearly optimal tradeoffs in terms of the dimension, distortion, and sparsity, for the important case of 1 \le p \lt 2 , much less was known. In this article, we obtain nearly optimal tradeoffs for \ell _1 oblivious subspace embeddings, as well as new tradeoffs for 1 \lt p \lt 2 . Our main results are as follows: (1) We show for every 1 \le p \lt 2 , any oblivious subspace embedding with dimension r has distortion \[ \kappa = \Omega \left(\frac{1}{\left(\frac{1}{d}\right)^{1 / p} \log ^{2 / p}r + \left(\frac{r}{n}\right)^{1 / p - 1 / 2}}\right).\] When r = {\operatorname{poly}}(d) \ll n in applications, this gives a \kappa = \Omega (d^{1/p}\log ^{-2/p} d) lower bound, and shows the oblivious subspace embedding of Sohler and Woodruff (STOC, 2011) for p = 1 is optimal up to {\operatorname{poly}}(\log (d)) factors. (2) We give sparse oblivious subspace embeddings for every 1 \le p \lt 2 . Importantly, for p = 1 , we achieve r = O(d \log d) , \kappa = O(d \log d) and s = O(\log d) non-zero entries per column. The best previous construction with s \le {\operatorname{poly}}(\log d) is due to Woodruff and Zhang (COLT, 2013), giving \kappa = \Omega (d^2 {\operatorname{poly}}(\log d)) or \kappa = \Omega (d^{3/2} \sqrt {\log n} \cdot {\operatorname{poly}}(\log d)) and r \ge d \cdot {\operatorname{poly}}(\log d) ; in contrast our r = O(d \log d) and \kappa = O(d \log d) are optimal up to {\operatorname{poly}}(\log (d)) factors even for dense matrices. We also give (1) \ell _p oblivious subspace embeddings with an expected 1+\varepsilon number of non-zero entries per column for arbitrarily small \varepsilon \gt 0 , and (2) the first oblivious subspace embeddings for 1 \le p \lt 2 with O(1) -distortion and dimension independent of n . Oblivious subspace embeddings are crucial for distributed and streaming environments, as well as entrywise \ell _p low-rank approximation. Our results give improved algorithms for these applications. 
    more » « less
  3. Abstract In this paper we consider the following problem: let X k , be a Banach space with a normalised basis ( e (k, j) ) j , whose biorthogonals are denoted by $${(e_{(k,j)}^*)_j}$$ , for $$k\in\N$$ , let $$Z=\ell^\infty(X_k:k\kin\N)$$ be their l ∞ -sum, and let $$T:Z\to Z$$ be a bounded linear operator with a large diagonal, i.e. , $$\begin{align*}\inf_{k,j} \big|e^*_{(k,j)}(T(e_{(k,j)})\big|>0.\end{align*}$$ Under which condition does the identity on Z factor through T ? The purpose of this paper is to formulate general conditions for which the answer is positive. 
    more » « less
  4. Abstract Let $$k_i\ (i=1,2,\ldots ,t)$$ be natural numbers with $$k_1>k_2>\cdots >k_t>0$$, $$k_1\geq 2$$ and $$t<k_1.$$ Given real numbers $$\alpha _{ji}\ (1\leq j\leq t,\ 1\leq i\leq s)$$, we consider polynomials of the shape $$\begin{align*} &\varphi_i(x)=\alpha_{1i}x^{k_1}+\alpha_{2i}x^{k_2}+\cdots+\alpha_{ti}x^{k_t},\end{align*}$$and derive upper bounds for fractional parts of polynomials in the shape $$\begin{align*} &\varphi_1(x_1)+\varphi_2(x_2)+\cdots+\varphi_s(x_s),\end{align*}$$by applying novel mean value estimates related to Vinogradov’s mean value theorem. Our results improve on earlier Theorems of Baker (2017). 
    more » « less
  5. abstract: We prove existence, uniqueness and regularity of solutions to the Einstein vacuum equations taking the form $$ {}^{(4)}g = -dt^2 + \sum_{i,j=1}^3 a_{ij}t^{2 p_{\max\{i,j\}}}\,{\rm d} x^i\,{\rm d} x^j $$ on $$(0,T]_t\times\Bbb{T}^3_x$$, where $$a_{ij}(t,x)$$ and $$p_i(x)$$ are regular functions without symmetry or analyticity assumptions. These metrics are singular and asymptotically Kasner-like as $$t\to 0^+$$. These solutions are expected to be highly non-generic, and our construction can be viewed as solving a singular initial value problem with Fuchsian-type analysis where the data are posed on the ``singular hypersurface'' $$\{t=0\}$$. This is the first such result without imposing symmetry or analyticity. To carry out the analysis, we study the problem in a synchronized coordinate system. In particular, we introduce a novel way to perform (weighted) energy estimates in such a coordinate system based on estimating the second fundamental forms of the constant-$$t$$ hypersurfaces. 
    more » « less