skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The R-process Alliance: A Nearly Complete R-process Abundance Template Derived from Ultraviolet Spectroscopy of the R-process-enhanced Metal-poor Star HD 222925*
Abstract We present a nearly complete rapid neutron-capture process ( r -process) chemical inventory of the metal-poor ([Fe/H] = −1.46 ± 0.10) r -process-enhanced ([Eu/Fe] = +1.32 ± 0.08) halo star HD 222925. This abundance set is the most complete for any object beyond the solar system, with a total of 63 metals detected and seven with upper limits. It comprises 42 elements from 31 ≤ Z ≤ 90, including elements rarely detected in r -process-enhanced stars, such as Ga, Ge, As, Se, Cd, In, Sn, Sb, Te, W, Re, Os, Ir, Pt, and Au. We derive these abundances from an analysis of 404 absorption lines in ultraviolet spectra collected using the Space Telescope Imaging Spectrograph on the Hubble Space Telescope and previously analyzed optical spectra. A series of appendices discusses the atomic data and quality of fits for these lines. The r -process elements from Ba to Pb, including all elements at the third r -process peak, exhibit remarkable agreement with the solar r -process residuals, with a standard deviation of the differences of only 0.08 dex (17%). In contrast, deviations among the lighter elements from Ga to Te span nearly 1.4 dex, and they show distinct trends from Ga to Se, Nb through Cd, and In through Te. The r -process contribution to Ga, Ge, and As is small, and Se is the lightest element whose production is dominated by the r -process. The lanthanide fraction, log X La = −1.39 ± 0.09, is typical for r -process-enhanced stars and higher than that of the kilonova from the GW170817 neutron-star merger event. We advocate adopting this pattern as an alternative to the solar r -process-element residuals when confronting future theoretical models of heavy-element nucleosynthesis with observations.  more » « less
Award ID(s):
1815403 1927130 1716251
PAR ID:
10337155
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal Supplement Series
Volume:
260
Issue:
2
ISSN:
0067-0049
Page Range / eLocation ID:
27
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present new observational benchmarks of rapid neutron-capture process (r-process) nucleosynthesis for elements at and between the first (A∼ 80) and second (A∼ 130) peaks. Our analysis is based on archival ultraviolet and optical spectroscopy of eight metal-poor stars with Se (Z= 34) or Te (Z= 52) detections, whoser-process enhancement varies by more than a factor of 30 (−0.22 ≤ [Eu/Fe] ≤ +1.32). We calculate ratios among the abundances of Se, Sr through Mo (38 ≤Z≤ 42), and Te. These benchmarks may offer a new empirical alternative to the predicted solar systemr-process residual pattern. The Te abundances in these stars correlate more closely with the lighterr-process elements than the heavier ones, contradicting and superseding previous findings. The small star-to-star dispersion among the abundances of Se, Sr, Y, Zr, Nb, Mo, and Te (≤0.13 dex, or 26%) matches that observed among the abundances of the lanthanides and thirdr-process-peak elements. The concept ofr-process universality that is recognized among the lanthanide and third-peak elements inr-process-enhanced stars may also apply to Se, Sr, Y, Zr, Nb, Mo, and Te, provided the overall abundances of the lighterr-process elements are scaled independently of the heavier ones. The abundance behavior of the elements Ru through Sn (44 ≤Z≤ 50) requires further study. Our results suggest that at least one relatively common source in the early Universe produced a consistent abundance pattern among some elements spanning the first and secondr-process peaks. 
    more » « less
  2. ABSTRACT We present a detailed chemical-abundance analysis of a highly r-process-enhanced (RPE) star, 2MASS J00512646-1053170, using high-resolution spectroscopic observations with Hubble Space Telescope/STIS in the UV and Magellan/MIKE in the optical. We determined abundances for 41 elements in total, including 23 r-process elements and rarely probed species such as Al ii, Ge i, Mo ii, Cd i, Os ii, Pt i, and Au i. We find that [Ge/Fe] = +0.10, which is an unusually high Ge enhancement for such a metal-poor star and indicates contribution from a production mechanism decoupled from that of Fe. We also find that this star has the highest Cd abundance observed for a metal-poor star to date. We find that the dispersion in the Cd abundances of metal-poor stars can be explained by the correlation of Cd i abundances with the stellar parameters of the stars, indicating the presence of NLTE effects. We also report that this star is now only the sixth star with Au abundance determined. This result, along with abundances of Pt and Os, uphold the case for the extension of the universal r-process pattern to the third r-process peak and to Au. This study adds to the sparse but growing number of RPE stars with extensive chemical-abundance inventories and highlights the need for not only more abundance determinations of these rarely probed species, but also advances in theoretical NLTE and astrophysical studies to reliably understand the origin of r-process elements. 
    more » « less
  3. Context. Over the past few years, theR-Process Alliance (RPA) has successfully carried out a search for stars that are highly enhanced in elements produced via the rapid neutron-capture (r-) process. In particular, the RPA has identified a number of relatively bright, highlyr-process-enhanced (r-II) stars, suitable for observations with the Hubble Space Telescope (HST), facilitating abundance derivation of elements such as gold (Au) and cadmium (Cd). Aims. This paper presents the detailed abundances derived for the metal-poor ([Fe/H] = −2.55) highlyr-process-enhanced ([Eu/Fe] = +1.29)r-II star 2MASS J05383296–5904280. Methods. One-dimensional local thermodynamic equilibrium (LTE) elemental abundances were derived via equivalent width and spectral synthesis using high-resolution high signal-to-noise near-UV HST/STIS and optical Magellan/MIKE spectra. Results. Abundances were determined for 43 elements, including 26 neutron-capture elements. In particular, abundances of the rarely studied elements Nb, Mo, Cd, Lu, Os, Pt, and Au are derived from the HST spectrum. These results, combined with RPA near-UV observations of two additionalr-II stars, increase the number of Cd abundances derived forr-process-enriched stars from seven to ten and Au abundances from four to seven. A large star-to-star scatter is detected for both of these elements, highlighting the need for more detections enabling further investigations, specifically into possible non-LTE effects. 
    more » « less
  4. Abstract We present stellar parameters and chemical abundances of 47 elements detected in the bright (V= 11.63) very metal-poor ([Fe/H] = −2.20 ± 0.12) star 2MASS J22132050−5137385. We observed this star using the Magellan Inamori Kyocera Echelle spectrograph as part of ongoing work by theR-Process Alliance. The spectrum of 2MASS J22132050−5137385 exhibits unusually strong lines of elements heavier than the iron group, and our analysis reveals that these elements were produced by rapid neutron-capture (r-process) nucleosynthesis. We derive a europium enhancement, [Eu/Fe] = +2.45 ± 0.08, that is higher than any otherr-process-enhanced star known at present. This star is only the eighthr-process-enhanced star where both thorium and uranium are detected, and we calculate the age of ther-process material, 13.6 ± 2.6 Gyr, from the radioactive decay of these isotopes. This star contains relatively large enhancements of elements that may be produced as transuranic fission fragments, and we propose a new method using this characteristic to assess ther-process yields and gas dilution in samples ofr-process-enhanced stars. Assuming a canonical baryonic minihalo mass of 106Mand a 1% metal retention rate, this star formed in a cloud of only ∼600M. We conclude that 2MASS J22132050−5137385 exhibits a high level ofr-process enhancement because it formed in an environment where ther-process material was less diluted than average. 
    more » « less
  5. Abstract Understanding the abundance pattern of metal-poor stars and the production of heavy elements through various nucleosynthesis processes offers crucial insights into the chemical evolution of the Milky Way, revealing primary sites and major sources of rapid neutron-capture process (r-process) material in the Universe. In this fifth data release from theR-Process Alliance (RPA), we present the detailed chemical abundances of 41 faint (down toV= 15.8) and extremely metal-poor (down to [Fe/H] = −3.3) halo stars selected from the RPA. We obtained high-resolution spectra for these objects with the HORuS spectrograph on the Gran Telescopio Canarias. We measure the abundances of light,α, Fe-peak, and neutron-capture elements. We report the discovery of five carbon-enhanced metal-poor, one limited-r, threer-I, and fourr-II stars, and six Mg-poor stars. We also identify one star of a possible globular cluster origin at an extremely low metallicity at [Fe/H] = −3.0. This adds to the growing evidence of a lower-limit metallicity floor for globular cluster abundances. We use the abundances of Fe-peak elements and theα-elements to investigate the contributions from different nucleosynthesis channels in the progenitor supernovae. We find the distribution of [Mg/Eu] as a function of [Fe/H] to have different enrichment levels, indicating different possible pathways and sites of their production. We also reveal differences in the trends of the neutron-capture element abundances of Sr, Ba, and Eu of variousr-I andr-II stars from the RPA data releases, which provide constraints on their nucleosynthesis sites and subsequent evolution. 
    more » « less