In the past, epidemics such as AIDS, measles, SARS, H1N1 influenza, and tuberculosis caused the death of millions of people around the world. In response, intensive research is evolving to design efficient drugs and vaccines. However, studies warn that new pandemics such as Coronavirus (COVID-19), variants, and even deadly pandemics can emerge in the future. The existing epidemic confinement approaches rely on a large amount of available data to determine policies. Such dependencies could cause an irreversible effect before proper strategies are developed. Furthermore, the existing approaches follow a one-size-fits-all control technique, which might not be effective. To overcome this, in this work, we develop a game-theory-inspired approach that considers societal and economic impacts and formulates epidemic control as a non-zero-sum game. Further, the proposed approach considers the demographic information that provides a tailored solution to each demography. We explore different strategies, including masking, social distancing, contact tracing, quarantining, partial-, and full-lockdowns and their combinations, and present demography-aware optimal solutions to confine a pandemic with minimal history information and optimal impact on the economy. To facilitate scalability, we propose a novel graph learning approach, which learns from the previously obtained COVID-19 game outputs and mobility rates of one state (region) depending on the other to produce an optimal solution. Our optimal solution is strategized to restrict the mobility between states based on the impact they are causing on COVID-19 spread. We aim to control the COVID-19 spread by more than 50% and model a dynamic solution that can be applied to different strains of COVID-19. Real-world demographic conditions specific to each state are created, and an optimal strategic solution is obtained to reduce the infection rate in each state by more than 50%.
more »
« less
Demography-aware COVID-19 Confinement with Game Theory
In the last decades, emerging and re-emerging epidemics such as AIDS, measles, SARS, HINI influenza, and tuberculosis cause death to millions of people each year. In response, a large and intensive research is evolving for the design of better drugs and vaccines. However, studies warn that the new pandemics such as Coronavirus (COVID-19) and even deadly pandemics can emerge in the future. The existing confinement approaches rely on large amount of available data to determine policies. Such dependencies could cause an irreversible effect before proper strategies are developed. Furthermore, the existing approaches follow a one-size fits all approach, which might not be effective. In contrast, we develop a game-theory inspired approach that considers societal and economic impacts and formulates the epidemic control as a non-zero sum dynamic game. Further, the proposed approach considers the demographic information leading to providing a tailored solution to each demography. We explore different strategies including masking, social distancing, contact tracing, quarantining, partial-, and full-lockdowns and their combinations and present demography-aware optimal solutions to confine a pandemic with minimal history information and optimal impact on economy.
more »
« less
- Award ID(s):
- 2029291
- PAR ID:
- 10337257
- Date Published:
- Journal Name:
- IEEE 3rd International Conference on Artificial Intelligence Circuits and Systems (AICAS)
- Page Range / eLocation ID:
- 1 to 4
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Lal, A ; Tonetta, S. (Ed.)Reactive synthesis holds the promise of generating automatically a verifiably correct program from a high-level specification. A popular such specification language is Linear Temporal Logic (LTL). Unfortunately, synthesizing programs from general LTL formulas, which relies on first constructing a game arena and then solving the game, does not scale to large instances. The specifications from practical applications are usually large conjunctions of smaller LTL formulas, which inspires existing compositional synthesis approaches to take advantage of this structural information. The main challenge here is that they solve the game only after obtaining the game arena, the most computationally expensive part in the procedure. In this work, we propose a compositional synthesis technique to tackle this difficulty by synthesizing a program for each small conjunct separately and composing them one by one. While this approach does not work for general LTL formulas, we show here that it does work for Safety LTL formulas, a popular and important fragment of LTL. While we have to compose all the programs of small conjuncts in the worst case, we can prune the intermediate programs to make later compositions easier and immediately conclude unrealizable as soon as some part of the specification is found unrealizable. By comparing our compositional approach with a portfolio of all other approaches, we observed that our approach was able to solve a notable number of instances not solved by others. In particular, experiments on scalable conjunctive benchmarks showed that our approach scale well and significantly outperform current Safety LTL synthesis techniques. We conclude that our compositional approach is an important contribution to the algorithmic portfolio of Safety LTL synthesis.more » « less
-
Guruswami, Venkatesan (Ed.)Gameplay under various forms of uncertainty has been widely studied. Feldman et al. [Michal Feldman et al., 2010] studied a particularly low-information setting in which one observes the opponent’s actions but no payoffs, not even one’s own, and introduced an algorithm which guarantees one’s payoff nonetheless approaches the minimax optimal value (i.e., zero) in a symmetric zero-sum game. Against an opponent playing a minimax-optimal strategy, approaching the value of the game is the best one can hope to guarantee. However, a wealth of research in behavioral economics shows that people often do not make perfectly rational, optimal decisions. Here we consider whether it is possible to actually win in this setting if the opponent is behaviorally biased. We model several deterministic, biased opponents and show that even without knowing the game matrix in advance or observing any payoffs, it is possible to take advantage of each bias in order to win nearly every round (so long as the game has the property that each action beats and is beaten by at least one other action). We also provide a partial characterization of the kinds of biased strategies that can be exploited to win nearly every round, and provide algorithms for beating some kinds of biased strategies even when we don't know which strategy the opponent uses.more » « less
-
Emerging wireless technologies are envisioned to support a variety of applications that require simultaneously maintaining low latency and high reliability. Non-orthogonal multiple access techniques constitute one candidate for grant-free transmission alleviating the signaling requirements for uplink transmissions. In open-loop transmissions over fading channels, in which the transmitters do not have access to the channel state information, the existing approaches are prone to facing frequent outage events. Such outage events lead to repeated re-transmissions of the duplicate information packets, penalizing the latency. This paper proposes a multi-access broadcast approach in which each user splits its information stream into several information layers, each adapted to one possible channel state. This approach facilitates preventing outage events and improves the overall transmission latency. Based on the proposed approach, the average queuing delay of each user is analyzed for different arrival processes at each transmitter. First, for deterministic arrivals, closed-form lower and upper bounds on the average delay are characterized analytically. Secondly, for Poisson arrivals, a closed-form expression for the average delay is delineated using the Pollaczek-Khinchin formula. Based on the established bounds, the proposed approach achieves less average delay than single-layer outage approaches. Under optimal power allocation among the encoded layers, numerical evaluations demonstrate that the proposed approach significantly minimizes average sum delays compared to traditional outage approaches, especially under high arrival rates.more » « less
-
Team-PSRO for Learning Approximate TMECor in Large Team Games via Cooperative Reinforcement LearningRecent algorithms have achieved superhuman performance at a number of twoplayer zero-sum games such as poker and go. However, many real-world situations are multi-player games. Zero-sum two-team games, such as bridge and football, involve two teams where each member of the team shares the same reward with every other member of that team, and each team has the negative of the reward of the other team. A popular solution concept in this setting, called TMECor, assumes that teams can jointly correlate their strategies before play, but are not able to communicate during play. This setting is harder than two-player zerosum games because each player on a team has different information and must use their public actions to signal to other members of the team. Prior works either have game-theoretic guarantees but only work in very small games, or are able to scale to large games but do not have game-theoretic guarantees. In this paper we introduce two algorithms: Team-PSRO, an extension of PSRO from twoplayer games to team games, and Team-PSRO Mix-and-Match which improves upon Team PSRO by better using population policies. In Team-PSRO, in every iteration both teams learn a joint best response to the opponent’s meta-strategy via reinforcement learning. As the reinforcement learning joint best response approaches the optimal best response, Team-PSRO is guaranteed to converge to a TMECor. In experiments on Kuhn poker and Liar’s Dice, we show that a tabular version of Team-PSRO converges to TMECor, and a version of Team PSRO using deep cooperative reinforcement learning beats self-play reinforcement learning in the large game of Google Research Football.more » « less