skip to main content


Title: Demography-aware COVID-19 Confinement with Game Theory
In the last decades, emerging and re-emerging epidemics such as AIDS, measles, SARS, HINI influenza, and tuberculosis cause death to millions of people each year. In response, a large and intensive research is evolving for the design of better drugs and vaccines. However, studies warn that the new pandemics such as Coronavirus (COVID-19) and even deadly pandemics can emerge in the future. The existing confinement approaches rely on large amount of available data to determine policies. Such dependencies could cause an irreversible effect before proper strategies are developed. Furthermore, the existing approaches follow a one-size fits all approach, which might not be effective. In contrast, we develop a game-theory inspired approach that considers societal and economic impacts and formulates the epidemic control as a non-zero sum dynamic game. Further, the proposed approach considers the demographic information leading to providing a tailored solution to each demography. We explore different strategies including masking, social distancing, contact tracing, quarantining, partial-, and full-lockdowns and their combinations and present demography-aware optimal solutions to confine a pandemic with minimal history information and optimal impact on economy.  more » « less
Award ID(s):
2029291
NSF-PAR ID:
10337257
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE 3rd International Conference on Artificial Intelligence Circuits and Systems (AICAS)
Page Range / eLocation ID:
1 to 4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the past, epidemics such as AIDS, measles, SARS, H1N1 influenza, and tuberculosis caused the death of millions of people around the world. In response, intensive research is evolving to design efficient drugs and vaccines. However, studies warn that new pandemics such as Coronavirus (COVID-19), variants, and even deadly pandemics can emerge in the future. The existing epidemic confinement approaches rely on a large amount of available data to determine policies. Such dependencies could cause an irreversible effect before proper strategies are developed. Furthermore, the existing approaches follow a one-size-fits-all control technique, which might not be effective. To overcome this, in this work, we develop a game-theory-inspired approach that considers societal and economic impacts and formulates epidemic control as a non-zero-sum game. Further, the proposed approach considers the demographic information that provides a tailored solution to each demography. We explore different strategies, including masking, social distancing, contact tracing, quarantining, partial-, and full-lockdowns and their combinations, and present demography-aware optimal solutions to confine a pandemic with minimal history information and optimal impact on the economy. To facilitate scalability, we propose a novel graph learning approach, which learns from the previously obtained COVID-19 game outputs and mobility rates of one state (region) depending on the other to produce an optimal solution. Our optimal solution is strategized to restrict the mobility between states based on the impact they are causing on COVID-19 spread. We aim to control the COVID-19 spread by more than 50% and model a dynamic solution that can be applied to different strains of COVID-19. Real-world demographic conditions specific to each state are created, and an optimal strategic solution is obtained to reduce the infection rate in each state by more than 50%. 
    more » « less
  2. We aim to preserve a large amount of data generated insidebase station-less sensor networks(BSNs) while considering that sensor nodes are selfish. BSNs refer to emerging sensing applications deployed in challenging and inhospitable environments (e.g., underwater exploration); as such, there do not exist data-collecting base stations in the BSN to collect the data. Consequently, the generated data has to be stored inside the BSN before uploading opportunities become available. Our goal is to preserve the data inside the BSN with minimum energy cost by incentivizing the storage- and energy-constrained sensor nodes to participate in the data preservation process. We refer to the problem as DPP:datapreservationproblem in the BSN. Previous research assumes that all the sensor nodes are cooperative and that sensors have infinite battery power and design a minimum-cost flow-based data preservation solution. However, in a distributed setting and under different control, the resource-constrained sensor nodes could behave selfishly only to conserve their resources and maximize their benefit.

    In this article, we first solve DPP by designing an integer linear programming (ILP)-based optimal solution without considering selfishness. We then establish a game-theoretical framework that achieves provably truthful and optimal data preservation in BSNs. For a special case of DPP wherein nodes are not energy-constrained, referred to as DPP-W, we design a data preservation game DPG-1 that integrates algorithmic mechanism design (AMD) and a more efficient minimum cost flow-based data preservation solution. We show that DPG-1 yields dominant strategies for sensor nodes and delivers truthful and optimal data preservation. For the general case of DPP (wherein nodes are energy-constrained), however, DPG-1 fails to achieve truthful and optimal data preservation. Utilizing packet-level flow observation of sensor node behaviors computed by minimum cost flow and ILP, we uncover the cause of the failure of the DPG-1. It is due to the packet dropping by the selfish nodes that manipulate the AMD technique. We then design a data preservation game DPG-2 for DPP that traces and punishes manipulative nodes in the BSN. We show that DPG-2 delivers dominant strategies for truth-telling nodes and achieves provably optimal data preservation with cheat-proof guarantees. Via extensive simulations under different network parameters and dynamics, we show that our games achieve system-wide data preservation solutions with optimal energy cost while enforcing truth-telling of sensor nodes about their private cost types. One salient feature of our work is its integrated game theory and network flows approach. With the observation of flow level sensor node behaviors provided by the network flows, our proposed games can synthesize “microscopic” (i.e., selfish and local) behaviors of sensor nodes and yield targeted “macroscopic” (i.e., optimal and global) network performance of data preservation in the BSN.

     
    more » « less
  3. Internet of Things (IoT) devices and applications can have significant vulnerabilities, which may be exploited by adversaries to cause considerable harm. An important approach for mitigating this threat is remote attestation, which enables the defender to remotely verify the integrity of devices and their software. There are a number of approaches for remote attestation, and each has its unique advantages and disadvantages in terms of detection accuracy and computational cost. Further, an attestation method may be applied in multiple ways, such as various lev- els of software coverage. Therefore, to minimize both security risks and computational overhead, defenders need to decide strategically which attestation methods to apply and how to apply them, depending on the characteristic of the devices and the potential losses. To answer these questions, we first develop a testbed for remote attestation of IoT devices, which enables us to measure the detection accuracy and performance overhead of various attestation methods. Our testbed integrates two example IoT applications, memory-checksum based attestation, and a variety of software vulnerabilities that allow adversaries to inject arbitrary code into running applications. Second, we model the problem of finding an optimal strategy for applying remote attestation as a Stackelberg security game between a defender and an adversary. We characterize the defender’s optimal attestation strategy in a variety of special cases. Finally, building on experimental results from our testbed, we evaluate our model and show that optimal strategic attestation can lead to significantly lower losses than naive baseline strategies. 
    more » « less
  4. null (Ed.)
    We consider an ultra-dense wireless network with N channels and M = N devices. Messages with fresh information are generated at each device according to a random process and need to be transmitted to an access point. The value of a message decreases as it ages, so each device searches for an idle channel to transmit the message as soon as it can. However, each channel probing is associated with a fixed cost (energy), so a device needs to adapt its probing rate based on the "age" of the message. At each device, the design of the optimal probing strategy can be formulated as an infinite horizon Markov Decision Process (MDP) where the devices compete with each other to find idle channels. While it is natural to view the system as a Bayesian game, it is often intractable to analyze such a system. Thus, we use the Mean Field Game (MFG) approach to analyze the system in a large-system regime, where the number of devices is very large, to understand the structure of the problem and to find efficient probing strategies. We present an analysis based on the MFG perspective. We begin by characterizing the space of valid policies and use this to show the existence of a Mean Field Nash Equilibrium (MFNE) in a constrained set for any general increasing cost functions with diminishing rewards. Further we provide an algorithm for computing the equilibrium for any given device, and the corresponding age-dependent channel probing policy. 
    more » « less
  5. Lal, A ; Tonetta, S. (Ed.)
    Reactive synthesis holds the promise of generating automatically a verifiably correct program from a high-level specification. A popular such specification language is Linear Temporal Logic (LTL). Unfortunately, synthesizing programs from general LTL formulas, which relies on first constructing a game arena and then solving the game, does not scale to large instances. The specifications from practical applications are usually large conjunctions of smaller LTL formulas, which inspires existing compositional synthesis approaches to take advantage of this structural information. The main challenge here is that they solve the game only after obtaining the game arena, the most computationally expensive part in the procedure. In this work, we propose a compositional synthesis technique to tackle this difficulty by synthesizing a program for each small conjunct separately and composing them one by one. While this approach does not work for general LTL formulas, we show here that it does work for Safety LTL formulas, a popular and important fragment of LTL. While we have to compose all the programs of small conjuncts in the worst case, we can prune the intermediate programs to make later compositions easier and immediately conclude unrealizable as soon as some part of the specification is found unrealizable. By comparing our compositional approach with a portfolio of all other approaches, we observed that our approach was able to solve a notable number of instances not solved by others. In particular, experiments on scalable conjunctive benchmarks showed that our approach scale well and significantly outperform current Safety LTL synthesis techniques. We conclude that our compositional approach is an important contribution to the algorithmic portfolio of Safety LTL synthesis. 
    more » « less