skip to main content

Title: Online Maintenance Prioritization Via Monte Carlo Tree Search and Case-Based Reasoning
Abstract When maintenance resources in a manufacturing system are limited, a challenge arises in determining how to allocate these resources among multiple competing maintenance jobs. This work formulates an online prioritization problem to tackle this challenge using a Markov decision process (MDP) to model the system behavior and Monte Carlo tree search (MCTS) to seek optimal maintenance actions in various states of the system. Further, case-based reasoning (CBR) is adopted to retain and reuse search experience gathered from MCTS to reduce the computational effort needed over time and to improve decision-making efficiency. The proposed method results in increased system throughput when compared to existing methods of maintenance prioritization while also reducing the computation time needed to identify optimal maintenance actions as more information is gathered. This is especially beneficial in manufacturing settings where maintenance decisions must be made quickly to minimize the negative performance impact of machine downtime.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Computing and Information Science in Engineering
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Often in manufacturing systems, scenarios arise where the demand for maintenance exceeds the capacity of maintenance resources. This results in the problem of allocating the limited resources among machines competing for them. This maintenance scheduling problem can be formulated as a Markov decision process (MDP) with the goal of finding the optimal dynamic maintenance action given the current system state. However, as the system becomes more complex, solving an MDP suffers from the curse of dimensionality. To overcome this issue, we propose a two-stage approach that first optimizes a static condition-based maintenance (CBM) policy using a genetic algorithm (GA) and then improves the policy online via Monte Carlo tree search (MCTS). The static policy significantly reduces the state space of the online problem by allowing us to ignore machines that are not sufficiently degraded. Furthermore, we formulate MCTS to seek a maintenance schedule that maximizes the long-term production volume of the system to reconcile the conflict between maintenance and production objectives. We demonstrate that the resulting online policy is an improvement over the static CBM policy found by GA. 
    more » « less
  2. Decision-making under uncertainty (DMU) is present in many important problems. An open challenge is DMU in non-stationary environments, where the dynamics of the environment can change over time. Reinforcement Learning (RL), a popular approach for DMU problems, learns a policy by interacting with a model of the environment offline. Unfortunately, if the environment changes the policy can become stale and take sub-optimal actions, and relearning the policy for the updated environment takes time and computational effort. An alternative is online planning approaches such as Monte Carlo Tree Search (MCTS), which perform their computation at decision time. Given the current environment, MCTS plans using high-fidelity models to determine promising action trajectories. These models can be updated as soon as environmental changes are detected to immediately incorporate them into decision making. However, MCTS’s convergence can be slow for domains with large state-action spaces. In this paper, we present a novel hybrid decision-making approach that combines the strengths of RL and planning while mitigating their weaknesses. Our approach, called Policy Augmented MCTS (PA-MCTS), integrates a policy’s actin-value estimates into MCTS, using the estimates to seed the action trajectories favored by the search. We hypothesize that PA-MCTS will converge more quickly than standard MCTS while making better decisions than the policy can make on its own when faced with nonstationary environments. We test our hypothesis by comparing PA-MCTS with pure MCTS and an RL agent applied to the classical CartPole environment. We find that PC-MCTS can achieve higher cumulative rewards than the policy in isolation under several environmental shifts while converging in significantly fewer iterations than pure MCTS. 
    more » « less
  3. Sequential decision-making under uncertainty is present in many important problems. Two popular approaches for tackling such problems are reinforcement learning and online search (e.g., Monte Carlo tree search). While the former learns a policy by interacting with the environment (typically done before execution), the latter uses a generative model of the environment to sample promising action trajectories at decision time. Decision-making is particularly challenging in non-stationary environments, where the environment in which an agent operates can change over time. Both approaches have shortcomings in such settings -- on the one hand, policies learned before execution become stale when the environment changes and relearning takes both time and computational effort. Online search, on the other hand, can return sub-optimal actions when there are limitations on allowed runtime. In this paper, we introduce \textit{Policy-Augmented Monte Carlo tree search} (PA-MCTS), which combines action-value estimates from an out-of-date policy with an online search using an up-to-date model of the environment. We prove theoretical results showing conditions under which PA-MCTS selects the one-step optimal action and also bound the error accrued while following PA-MCTS as a policy. We compare and contrast our approach with AlphaZero, another hybrid planning approach, and Deep Q Learning on several OpenAI Gym environments. Through extensive experiments, we show that under non-stationary settings with limited time constraints, PA-MCTS outperforms these baselines. 
    more » « less
  4. Abstract

    Supervised machine learning via artificial neural network (ANN) has gained significant popularity for many geomechanics applications that involves multi‐phase flow and poromechanics. For unsaturated poromechanics problems, the multi‐physics nature and the complexity of the hydraulic laws make it difficult to design the optimal setup, architecture, and hyper‐parameters of the deep neural networks. This paper presents a meta‐modeling approach that utilizes deep reinforcement learning (DRL) to automatically discover optimal neural network settings that maximize a pre‐defined performance metric for the machine learning constitutive laws. This meta‐modeling framework is cast as a Markov Decision Process (MDP) with well‐defined states (subsets of states representing the proposed neural network (NN) settings), actions, and rewards. Following the selection rules, the artificial intelligence (AI) agent, represented in DRL via NN, self‐learns from taking a sequence of actions and receiving feedback signals (rewards) within the selection environment. By utilizing the Monte Carlo Tree Search (MCTS) to update the policy/value networks, the AI agent replaces the human modeler to handle the otherwise time‐consuming trial‐and‐error process that leads to the optimized choices of setup from a high‐dimensional parametric space. This approach is applied to generate two key constitutive laws for the unsaturated poromechanics problems: (1) the path‐dependent retention curve with distinctive wetting and drying paths. (2) The flow in the micropores, governed by an anisotropic permeability tensor. Numerical experiments have shown that the resultant ML‐generated material models can be integrated into a finite element (FE) solver to solve initial‐boundary‐value problems as replacements of the hand‐craft constitutive laws.

    more » « less
  5. In the wake of a cybersecurity incident, it is crucial to promptly discover how the threat actors breached security in order to assess the impact of the incident and to develop and deploy countermeasures that can protect against further attacks. To this end, defenders can launch a cyber-forensic investigation, which discovers the techniques that the threat actors used in the incident. A fundamental challenge in such an investigation is prioritizing the investigation of particular techniques since the investigation of each technique requires time and effort, but forensic analysts cannot know which ones were actually used before investigating them. To ensure prompt discovery, it is imperative to provide decision support that can help forensic analysts with this prioritization. A recent study demonstrated that data-driven decision support, based on a dataset of prior incidents, can provide state-of-the-art prioritization. However, this data-driven approach, called DISCLOSE, is based on a heuristic that utilizes only a subset of the available information and does not approximate optimal decisions. To improve upon this heuristic, we introduce a principled approach for data-driven decision support for cyber-forensic investigations. We formulate the decision-support problem using a Markov decision process, whose states represent the states of a forensic investigation. To solve the decision problem, we propose a Monte Carlo tree search based method, which relies on a k-NN regression over prior incidents to estimate state-transition probabilities. We evaluate our proposed approach on multiple versions of the MITRE ATT&CK dataset, which is a knowledge base of adversarial techniques and tactics based on real-world cyber incidents, and demonstrate that our approach outperforms DISCLOSE in terms of techniques discovered per effort spent. 
    more » « less