Autonomous maze navigation is appealing yet challenging in soft robotics for exploring priori unknown unstructured environments, as it often requires human-like brain that integrates onboard power, sensors, and control for computational intelligence. Here, we report harnessing both geometric and materials intelligence in liquid crystal elastomer–based self-rolling robots for autonomous escaping from complex multichannel mazes without the need for human-like brain. The soft robot powered by environmental thermal energy has asymmetric geometry with hybrid twisted and helical shapes on two ends. Such geometric asymmetry enables built-in active and sustained self-turning capabilities, unlike its symmetric counterparts in either twisted or helical shapes that only demonstrate transient self-turning through untwisting. Combining self-snapping for motion reflection, it shows unique curved zigzag paths to avoid entrapment in its counterparts, which allows for successful self-escaping from various challenging mazes, including mazes on granular terrains, mazes with narrow gaps, and even mazes with in situ changing layouts.
more »
« less
Transport in mazes; simple geometric representations to guide the design of engineered systems
Although engineers can control the internal geometry of materials down to the micro-scale, it is unclear what configuration is ideal for a given transport process. We explore the use of mazes as abstract representations of two-phase systems. Mazes can be easily generated using many different algorithms and then represented as graphs for analysis. The three, dimensionless graph parameters of effective tortuous resistance, average tortuosity, and minimum-cut-size were derived and then correlated to the maze’s effective transport property (e.g., permeability), average residence time, and robustness, respectively. It was shown that by tuning the settings of the maze algorithm, one can obtain desired maze performance. Finally, a composite maze was constructed and shown to mimic the geometry and permeability of a real commercial membrane. In principle, a surrogate maze geometry can be optimized/tuned for a given transport process and then used to guide the rational design of the engineered system it represents.
more »
« less
- Award ID(s):
- 1603318
- PAR ID:
- 10337418
- Date Published:
- Journal Name:
- Chemical engineering science
- Volume:
- 250
- ISSN:
- 0009-2509
- Page Range / eLocation ID:
- 117416
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Slickwater hydraulic fracturing is becoming a prevalent approach to economically recovering shale hydrocarbon. It is very important to understand the proppant’s transport behavior during slickwater hydraulic fracturing treatment for effective creation of a desired propped fracture geometry. The currently available models are either oversimplified or have been performed at limited length scales to avoid high computational requirements. Another limitation is that the currently available hydraulic fracturing simulators are developed using only single-sized proppant particles. Motivated by this, in this work, a computationally efficient, three-dimensional, multiphase particle-in-cell (MP-PIC) model was employed to simulate the multi-size proppant transport in a field-scale geometry using the Eulerian–Lagrangian framework. Instead of tracking each particle, groups of particles (called parcels) are tracked, which allows one to simulate the proppant transport in field-scale geometries at an affordable computational cost. Then, we found from our sensitivity study that pumping schedules significantly affect propped fracture surface area and average fracture conductivity, thereby influencing shale gas production. Motivated by these results, we propose an optimization framework using the MP-PIC model to design the multi-size proppant pumping schedule that maximizes shale gas production from unconventional reservoirs for given fracturing resources.more » « less
-
Neurons exhibit complex geometry in their branched networks of neurites which is essential to the function of individual neuron but also brings challenges to transport a wide variety of essential materials throughout their neurite networks for their survival and function. While numerical methods like isogeometric analysis (IGA) have been used for modeling the material transport process via solving partial differential equations (PDEs), they require long computation time and huge computation resources to ensure accurate geometry representation and solution, thus limit their biomedical application. Here we present a graph neural network (GNN)-based deep learning model to learn the IGA-based material transport simulation and provide fast material concentration prediction within neurite networks of any topology. Given input boundary conditions and geometry configurations, the well-trained model can predict the dynamical concentration change during the transport process with an average error less than 10% and 120∼330 times faster compared to IGA simulations. The effectiveness of the proposed model is demonstrated within several complex neurite networks.more » « less
-
null (Ed.)Abstract Neurons exhibit complex geometry in their branched networks of neurites which is essential to the function of individual neuron but also brings challenges to transport a wide variety of essential materials throughout their neurite networks for their survival and function. While numerical methods like isogeometric analysis (IGA) have been used for modeling the material transport process via solving partial differential equations (PDEs), they require long computation time and huge computation resources to ensure accurate geometry representation and solution, thus limit their biomedical application. Here we present a graph neural network (GNN)-based deep learning model to learn the IGA-based material transport simulation and provide fast material concentration prediction within neurite networks of any topology. Given input boundary conditions and geometry configurations, the well-trained model can predict the dynamical concentration change during the transport process with an average error less than 10% and $$120 \sim 330$$ 120 ∼ 330 times faster compared to IGA simulations. The effectiveness of the proposed model is demonstrated within several complex neurite networks.more » « less
-
With the advancement and dominant service of Internet videos, the content-based video deduplication system becomes an essential and dependent infrastructure for Internet video service. However, the explosively growing video data on the Internet challenges the system design and implementation for its scalability in several ways. (1) Although the quantization-based indexing techniques are effective for searching visual features at a large scale, the costly re-training over the complete dataset must be done periodically. (2) The high-dimensional vectors for visual features demand increasingly large SSD space, degrading I/O performance. (3) Videos crawled from the Internet are diverse, and visually similar videos are not necessarily the duplicates, increasing deduplication complexity. (4) Most videos are edited ones. The duplicate contents are more likely discovered as clips inside the videos, demanding processing techniques with close attention to details. To address above-mentioned issues, we propose Maze, a full-fledged video deduplication system. Maze has an ANNS layer that indexes and searches the high dimensional feature vectors. The architecture of the ANNS layer supports efficient reads and writes and eliminates the data migration caused by re-training. Maze adopts the CNN-based feature and the ORB feature as the visual features, which are optimized for the specific video deduplication task. The features are compact and fully reside in the memory. Acoustic features are also incorporated in Maze so that the visually similar videos but having different audio tracks are recognizable. A clip-based matching algorithm is developed to discover duplicate contents at a fine granularity. Maze has been deployed as a production system for two years. It has indexed 1.3 billion videos and is indexing ~800 thousand videos per day. For the ANNS layer, the average read latency is 4 seconds and the average write latency is at most 4.84 seconds. The re-training over the complete dataset is no longer required no matter how many new data sets are added, eliminating the costly data migration between nodes. Maze recognizes the duplicate live streaming videos with both the similar appearance and the similar audio at a recall of 98%. Most importantly, Maze is also cost-effective. For example, the compact feature design helps save 5800 SSDs and the computation resources devoted to running the whole system decrease to 250K standard cores per billion videos.more » « less
An official website of the United States government

