skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Leveraging Intermediate Artifacts to Improve Automated Trace Link Retrieval
Software traceability establishes a network of connections between diverse artifacts such as requirements, design, and code. However, given the cost and effort of creating and maintaining trace links manually, researchers have proposed automated approaches using information retrieval techniques. Current approaches focus almost entirely upon generating links between pairs of artifacts and have not leveraged the broader network of interconnected artifacts. In this paper we investigate the use of intermediate artifacts to enhance the accuracy of the generated trace links - focusing on paths consisting of source, target, and intermediate artifacts. We propose and evaluate combinations of techniques for computing semantic similarity, scaling scores across multiple paths, and aggregating results from multiple paths. We report results from five projects, including one large industrial project. We find that leveraging intermediate artifacts improves the accuracy of end-to-end trace retrieval across all datasets and accuracy metrics. After further analysis, we discover that leveraging intermediate artifacts is only helpful when a project's artifacts share a common vocabulary, which tends to occur in refinement and decomposition hierarchies of artifacts. Given our hybrid approach that integrates both direct and transitive links, we observed little to no loss of accuracy when intermediate artifacts lacked a shared vocabulary with source or target artifacts.  more » « less
Award ID(s):
1901059
PAR ID:
10337429
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE International Conference on Software Maintenance and Evolution
Page Range / eLocation ID:
81 to 92
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Software traceability establishes and leverages associations between diverse development artifacts. Researchers have proposed the use of deep learning trace models to link natural language artifacts, such as requirements and issue descriptions, to source code; however, their effectiveness has been restricted by availability of labeled data and efficiency at runtime. In this study, we propose a novel framework called Trace BERT (T-BERT) to generate trace links between source code and natural language artifacts. To address data sparsity, we leverage a three-step training strategy to enable trace models to transfer knowledge from a closely related Software Engineering challenge, which has a rich dataset, to produce trace links with much higher accuracy than has previously been achieved. We then apply the T-BERT framework to recover links between issues and commits in Open Source Projects. We comparatively evaluated accuracy and efficiency of three BERT architectures. Results show that a Single-BERT architecture generated the most accurate links, while a Siamese-BERT architecture produced comparable results with significantly less execution time. Furthermore, by learning and transferring knowledge, all three models in the framework outperform classical IR trace models. On the three evaluated real-word OSS projects, the best T-BERT stably outperformed the VSM model with average improvements of 60.31% measured using Mean Average Precision (MAP). RNN severely underperformed on these projects due to insufficient training data, while T-BERT overcame this problem by using pretrained language models and transfer learning. 
    more » « less
  2. In many regulated domains, traceability is established across diverse artifacts such as requirements, design, code, test cases, and hazards -- either manually or with the help of supporting tools, and the resulting trace links are used to support activities such as impact analysis, compliance verification, and safety inspections. Automated tracing techniques need to leverage the semantics of underlying artifacts in order to establish more accurate trace links and to provide explanations of links that have been created in either a manual or automated fashion. To support this, we propose an automated technique which leverages source code, project artifacts and an external domain corpus to generate a domain-specific concept model. We then use the generated concept model to improve traceability results and to provide explanations of the results. Our approach overcomes existing problems with deep-learning traceability algorithms, as it does not require a training set of existing trace links. Finally, as an initial proof-of-concept, we apply our semantically-guided approach to the Dronology project, and show that it improves over other tracing techniques that do not use a concept model. 
    more » « less
  3. Software traceability establishes associations between diverse software artifacts such as requirements, design, code, and test cases. Due to the non-trivial costs of manually creating and maintaining links, many researchers have proposed automated approaches based on information retrieval techniques. However, many globally distributed software projects produce software artifacts written in two or more languages. The use of intermingled languages reduces the efficacy of automated tracing solutions. In this paper, we first analyze and discuss patterns of intermingled language use across multiple projects, and then evaluate several different tracing algorithms including the Vector Space Model (VSM), Latent Semantic Indexing (LSI), Latent Dirichlet Allocation (LDA), and various models that combine mono- and cross-lingual word embeddings with the Generative Vector Space Model (GVSM). Based on an analysis of 14 Chinese-English projects, our results show that best performance is achieved using mono-lingual word embeddings integrated into GVSM with machine translation as a preprocessing step. 
    more » « less
  4. null (Ed.)
    Deep convolutional neural networks (CNNs) achieve state-of-the-art accuracy for many computer vision tasks. But using them for video monitoring applications incurs high computational cost and inference latency. Thus, recent works have studied how to improve system efficiency. But they largely focus on small "closed world" prediction vocabularies even though many applications in surveillance security, traffic analytics, etc. have an ever-growing set of target entities. We call this the "unbounded vocabulary" issue, and it is a key bottleneck for emerging video monitoring applications. We present the first data system for tacking this issue for video querying, Panorama. Our design philosophy is to build a unified and domain-agnostic system that lets application users generalize to unbounded vocabularies in an out-of-the-box manner without tedious manual re-training. To this end, we synthesize and innovate upon an array of techniques from the ML, vision, databases, and multimedia systems literature to devise a new system architecture. We also present techniques to ensure Panorama has high inference efficiency. Experiments with multiple real-world datasets show that Panorama can achieve between 2x to 20x higher efficiency than baseline approaches on in-vocabulary queries, while still yielding comparable accuracy and also generalizing well to unbounded vocabularies. 
    more » « less
  5. Network traffic is difficult to characterize due to its random, bursty nature. Even if a traffic source could be fit to a stochastic model with reasonable accuracy, analysis of end-to-end network performance metrics for such traffic models is generally intractable. In prior work, an approach to characterize traffic burstiness using a bound based on the class of phase-type distributions was proposed. Such phase-type bounds could be applied in conjunction with stochastic network calculus to derive probabilistic end-to-end delay bounds for a traffic stream. In this paper, we focus on the problem of estimating a tight phase-type burstiness bound for a given traffic trace. We investigate a method based on least squares and another based on the expectation-maximization algorithm. Our numerical results compare the two approaches in the scenario of a heavy-tailed M/G/1 queue. We find that while both methods are viable approaches for deriving phase-type bounds on traffic burstiness, the least squares approach performs better, particularly when a tail limit is imposed. 
    more » « less