skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Free transport for convex potentials
We construct non-commutative analogs of transport maps among free Gibbs state satisfying a certain convexity condition. Unlike previous constructions, our approach is non-perturbative in nature and thus can be used to construct transport maps between free Gibbs states associated to potentials which are far from quadratic, i.e., states which are far from the semicircle law. An essential technical ingredient in our approach is the extension of free stochastic analysis to non-commutative spaces of functions based on the Haagerup tensor product.  more » « less
Award ID(s):
1762360
PAR ID:
10337625
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
New Zealand Journal of Mathematics
Volume:
52
ISSN:
1179-4984
Page Range / eLocation ID:
259 to 359
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Contraction properties of transport maps between probability measures play an important role in the theory of functional inequalities. The actual construction of such maps, however, is a non-trivial task and, so far, relies mostly on the theory of optimal transport. In this work, we take advantage of the infinite-dimensional nature of the Gaussian measure and construct a new transport map, based on the Föllmer process, which pushes forward the Wiener measure onto probability measures on Euclidean spaces. Utilizing the tools of the Malliavin and stochastic calculus in Wiener space, we show that this Brownian transport map is a contraction in various settings where the analogous questions for optimal transport maps are open. The contraction properties of the Brownian transport map enable us to prove functional inequalities in Euclidean spaces, which are either completely new or improve on current results. Further and related applications of our contraction results are the existence of Stein kernels with desirable properties (which lead to new central limit theorems), as well as new insights into the Kannan–Lovász–Simonovits conjecture. We go beyond the Euclidean setting and address the problem of contractions on the Wiener space itself. We show that optimal transport maps and causal optimal transport maps (which are related to Brownian transport maps) between the Wiener measure and other target measures on Wiener space exhibit very different behaviors. 
    more » « less
  2. Abstract Recent work of Barbieri and Meyerovitch has shown that, for very general spin systems indexed by sofic groups, equilibrium (i.e. pressure-maximizing) states are Gibbs. The main goal of this paper is to show that the converse fails in an interesting way: for the Ising model on a free group, the free-boundary state typically fails to be equilibrium as long as it is not theonlyGibbs state. For every temperature between the uniqueness and reconstruction thresholds a typical sofic approximation gives this state finite but non-maximal pressure, and for every lower temperature the pressure is non-maximal overeverysofic approximation. We also show that, for more general interactions on sofic groups, the local on average limit of Gibbs states over a sofic approximation Σ, if it exists, is a mixture of Σ-equilibrium states. We use this to show that the plus- and minus-boundary-condition Ising states are Σ-equilibrium if Σ is any sofic approximation to a free group. Combined with a result of Dembo and Montanari, this implies that these states have the same entropy over every sofic approximation. 
    more » « less
  3. An excellent ring of prime characteristic for which the Frobenius map is pure is also Frobenius split in many commonly occurring situations in positive characteristic commutative algebra and algebraic geometry. However, using a fundamental construction from rigid geometry, we show that excellent $$F$$-pure rings of prime characteristic are not Frobenius split in general, even for Euclidean domains. Our construction uses the existence of a complete non-Archimedean field $$k$$ of characteristic $$p$$ with no nonzero continuous $$k$$-linear maps $$k^{1/p} \to k$$. An explicit example of such a field is given based on ideas of Gabber, and may be of independent interest. Our examples settle a long-standing open question in the theory of $$F$$-singularities whose origin can be traced back to when Hochster and Roberts introduced the notion of $$F$$-purity. The excellent Euclidean domains we construct also admit no nonzero $$R$$-linear maps $$R^{1/p} \rightarrow R$$. These are the first examples that illustrate that $$F$$-purity and Frobenius splitting define different classes of singularities for excellent domains, and are also the first examples of excellent domains with no nonzero $$p^{-1}$$-linear maps. The latter is particularly interesting from the perspective of the theory of test ideals. 
    more » « less
  4. Abstract We study the free probabilistic analog of optimal couplings for the quadratic cost, where classical probability spaces are replaced by tracial von Neumann algebras, and probability measures on $${\mathbb {R}}^m$$ R m are replaced by non-commutative laws of m -tuples. We prove an analog of the Monge–Kantorovich duality which characterizes optimal couplings of non-commutative laws with respect to Biane and Voiculescu’s non-commutative $$L^2$$ L 2 -Wasserstein distance using a new type of convex functions. As a consequence, we show that if ( X ,  Y ) is a pair of optimally coupled m -tuples of non-commutative random variables in a tracial $$\mathrm {W}^*$$ W ∗ -algebra $$\mathcal {A}$$ A , then $$\mathrm {W}^*((1 - t)X + tY) = \mathrm {W}^*(X,Y)$$ W ∗ ( ( 1 - t ) X + t Y ) = W ∗ ( X , Y ) for all $$t \in (0,1)$$ t ∈ ( 0 , 1 ) . Finally, we illustrate the subtleties of non-commutative optimal couplings through connections with results in quantum information theory and operator algebras. For instance, two non-commutative laws that can be realized in finite-dimensional algebras may still require an infinite-dimensional algebra to optimally couple. Moreover, the space of non-commutative laws of m -tuples is not separable with respect to the Wasserstein distance for $$m > 1$$ m > 1 . 
    more » « less
  5. We consider damped stochastic systems in a controlled (time-varying) potential and study their transition between specified Gibbs-equilibria states in finite time. By the second law of thermody- namics, the minimum amount of work needed to transition from one equilibrium state to another is the difference between the Helmholtz free energy of the two states and can only be achieved by a reversible (infinitely slow) process. The minimal gap between the work needed in a finite-time transition and the work during a reversible one, turns out to equal the square of the optimal mass transport (Wasserstein- 2) distance between the two end-point distributions times the inverse of the duration needed for the transition. This result, in fact, relates non-equilibrium optimal control strategies (protocols) to gradient flows of entropy functionals via the Jordan-Kinderlehrer-Otto scheme. The purpose of this paper is to introduce ideas and results from the emerging field of stochastic thermodynamics in the setting of classical regulator theory, and to draw connections and derive such fundamental relations from a control perspective in a multivariable setting. 
    more » « less