skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rotating spirals in oscillatory media with nonlocal interactions and their normal form
Biological and physical systems that can be classified as oscillatory media give rise to interesting phenomena like target patterns and spiral waves. The existence of these structures has been proven in the case of systems with local diffusive interactions. In this paper the more general case of oscillatory media with nonlocal coupling is considered. We model these systems using evolution equations where the nonlocal interactions are expressed via a diffusive convolution kernel, and prove the existence of rotating wave solutions for these systems. Since the nonlocal nature of the equations precludes the use of standard techniques from spatial dynamics, the method we use relies instead on a combination of a multiple-scales analysis and a construction similar to Lyapunov-Schmidt. This approach then allows us to derive a normal form, or reduced equation, that captures the leading order behavior of these solutions.  more » « less
Award ID(s):
1911742
PAR ID:
10337663
Author(s) / Creator(s):
Date Published:
Journal Name:
Discrete and Continuous Dynamical Systems - S
Volume:
0
Issue:
0
ISSN:
1937-1632
Page Range / eLocation ID:
0
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider a [Formula: see text] system of hyperbolic balance laws that is the converted form under inverse Hopf–Cole transformation of a Keller–Segel type chemotaxis model. We study Cauchy problem when Cauchy data connect two different end-states as [Formula: see text]. The background wave is a diffusive contact wave of the reduced system. We establish global existence of solution and study the time asymptotic behavior. In the special case where the cellular population initially approaches its stable equilibrium value as [Formula: see text], we obtain nonlinear stability of the diffusive contact wave under smallness assumption. In the general case where the population initially does not approach to its stable equilibrium value at least at one of the far fields, we use a correction function in the time asymptotic ansatz, and show that the population approaches logistically to its stable equilibrium value. Our result shows two significant differences when comparing to Euler equations with damping. The first one is the existence of a secondary wave in the time asymptotic ansatz. This implies that our solutions converge to the diffusive contact wave slower than those of Euler equations with damping. The second one is that the correction function logistically grows rather than exponentially decays. 
    more » « less
  2. In this paper, we consider minimizers for nonlocal energy functionals generalizing elastic energies that are connected with the theory of peridynamics [19] or nonlocal diffusion models [1]. We derive nonlocal versions of the Euler-Lagrange equations under two sets of growth assumptions for the integrand. Existence of minimizers is shown for integrands with joint convexity (in the function and nonlocal gradient components). By using the convolution structure, we show regularity of solutions for certain Euler-Lagrange equations. No growth assumptions are needed for the existence and regularity of minimizers results, in contrast with the classical theory. 
    more » « less
  3. Abstract We prove the existence and uniqueness of global smooth solutions of the critical dissipative SQG equation in bounded domains in . We introduce a new methodology of transforming the single nonlocal nonlinear evolution equation in a bounded domain into an interacting system of extended nonlocal nonlinear evolution equations in the whole space. The proof then uses the method of the nonlinear maximum principle for nonlocal operators in the extended system. 
    more » « less
  4. Abstract We study the existence and uniqueness of solutions to the vector field Peierls–Nabarro (PN) model for curved dislocations in a transversely isotropic medium. Under suitable assumptions for the misfit potential on the slip plane, we reduce the 3D PN model to a nonlocal scalar Ginzburg–Landau equation. For a particular range of elastic coefficients, the nonlocal scalar equation with explicit nonlocal positive kernel is derived. We prove that any stable steady solution has a one-dimensional profile. As a result, we obtain that solutions to the scalar equation, as well as the original 3D system, are characterized as a one-parameter family of straight dislocations. This paper generalizes results found previously for the full isotropic case to an anisotropic setting. 
    more » « less
  5. A discussion of three-wave interaction systems with rapidly decaying data is provided. Included are the classical and two nonlocal three-wave interaction systems. These three-wave equations are formulated from underlying compatible linear systems and are connected to a third order linear scattering problem. The inverse scattering transform (IST) is carried out in detail for all these three-wave interaction equations. This entails obtaining and analyzing the direct scattering problem, discrete eigenvalues, symmetries, the inverse scattering problem via Riemann--Hilbert methods, minimal scattering data, and time dependence. In addition, soliton solutions illustrating energy sharing mechanisms are also discussed. A crucial step in the analysis is the use of adjoint eigenfunctions which connects the third order scattering problem to key eigenfunctions that are analytic in the upper/lower half planes. The general compatible nonlinear wave system and its classical and nonlocal three-wave reductions are asymptotic limits of physically significant nonlinear equations, including water/gravity waves with surface tension. 
    more » « less