skip to main content


Title: Taming the Communication and Computation Complexity of Combinatorial Auctions: The FUEL Bid Language
Combinatorial auctions have found widespread application for allocating multiple items in the presence of complex bidder preferences. The enumerative exclusive OR (XOR) bid language is the de facto standard bid language for spectrum auctions and other applications, despite the difficulties, in larger auctions, of enumerating all the relevant packages or solving the resulting NP-hard winner determination problem. We introduce the flexible use and efficient licensing (FUEL) bid language, which was proposed for radio spectrum auctions to ease both communications and computations compared with XOR-based auctions. We model the resulting allocation problem as an integer program, discuss computational complexity, and conduct an extensive set of computational experiments, showing that the winner determination problem of the FUEL bid language can be solved reliably for large realistic-sized problem instances in less than half an hour on average. In contrast, auctions with an XOR bid language quickly become intractable even for much smaller problem sizes. We compare a sealed-bid FUEL auction to a sealed-bid auction with an XOR bid language and to a simultaneous clock auction. The sealed-bid auction with an XOR bid language incurs significant welfare losses because of the missing bids problem and computational hardness, the simultaneous clock auction leads to a substantially lower efficiency than FUEL because of the exposure problem. This paper was accepted by Axel Ockenfels.  more » « less
Award ID(s):
1947514
PAR ID:
10337679
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Management Science
ISSN:
0025-1909
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cremers, Cas ; Kirda, Engin (Ed.)
    We introduce the first practical protocols for fully decentralized sealed-bid auctions using timed commitments. Timed commitments ensure that the auction is finalized fairly even if all participants drop out after posting bids or if bidders collude to try to learn the bidder’s bid value. Our protocols rely on a novel non-malleable timed commitment scheme which efficiently supports range proofs to establish that bidders have sufficient funds to cover a hidden bid value. This allows us to penalize users who abandon bids for exactly the bid value, while supporting simultaneous bidding in multiple auctions with a shared collateral pool. Our protocols are concretely efficient and we have implemented them in an Ethereum- compatible smart contract which automatically enforces payment and delivery of an auctioned digital asset. 
    more » « less
  2. We revisit the well-studied problem of budget-feasible procurement, where a buyer with a strict budget constraint seeks to acquire services from a group of strategic providers (the sellers). During the last decade, several strategyproof budget-feasible procurement auctions have been proposed, aiming to maximize the value of the buyer, while eliciting each seller’s true cost for providing their service. These solutions predominantly take the form of randomized sealed-bid auctions: they ask the sellers to report their private costs and then use randomization to determine which subset of services will be procured and how much each of the chosen providers will be paid, ensuring that the total payment does not exceed the buyer’s budget. Our main result in this paper is a novel method for designing budget-feasible auctions, leading to solutions that outperform the previously proposed auctions in multiple ways. First, our solutions take the form of descending clock auctions, and thus satisfy a list of very appealing properties, such as obvious strategyproofness, group strategyproofness, transparency, and unconditional winner privacy; this makes these auctions much more likely to be used in practice. Second, in contrast to previous results that heavily depend on randomization, our auctions are deterministic. As a result, we provide an affirmative answer to one of the main open questions in this literature, asking whether a deterministic strategyproof auction can achieve a constant approximation when the buyer’s valuation function is submodular over the set of services. In addition to this, we also provide the first deterministic budget-feasible auction that matches the approximation bound of the best-known randomized auction for the class of subadditive valuations. Finally, using our method, we improve the best-known approximation factor for monotone submodular valuations, which has been the focus of most of the prior work 
    more » « less
  3. We design and analyze deterministic and randomized clock auctions for single-parameter domains with downward-closed feasibility constraints, aiming to maximize the social welfare. Clock auctions have been shown to satisfy a list of compelling incentive properties making them a very practical solution for real-world applications, partly because they require very little reasoning from the participating bidders. However, the first results regarding the worst-case performance of deterministic clock auctions from a welfare maximization perspective indicated that they face obstacles even for a seemingly very simple family of instances, leading to a logarithmic inapproximability result; this inapproximability result is information-theoretic and holds even if the auction has unbounded computational power. In this paper we propose a deterministic clock auction that achieves a logarithmic approximation for any downward-closed set system, using black box access to a solver for the underlying optimization problem. This proves that our clock auction is optimal and that the aforementioned family of instances exactly captures the information limitations of deterministic clock auctions. We then move beyond deterministic auctions and design randomized clock auctions that achieve improved approximation guarantees for a generalization of this family of instances, suggesting that the earlier indications regarding the performance of clock auctions may have been overly pessimistic. 
    more » « less
  4. null (Ed.)
    We identify the first static credible mechanism for multi-item additive auctions that achieves a constant factor of the optimal revenue. This is one instance of a more general framework for designing two-part tariff auctions, adapting the duality framework of Cai et al [CDW16]. Given a (not necessarily incentive compatible) auction format A satisfying certain technical conditions, our framework augments the auction with a personalized entry fee for each bidder, which must be paid before the auction can be accessed. These entry fees depend only on the prior distribution of bidder types, and in particular are independent of realized bids. Our framework can be used with many common auction formats, such as simultaneous first-price, simultaneous second-price, and simultaneous all-pay auctions. If all-pay auctions are used, we prove that the resulting mechanism is credible in the sense that the auctioneer cannot benefit by deviating from the stated mechanism after observing agent bids. If second-price auctions are used, we obtain a truthful O(1)-approximate mechanism with fixed entry fees that are amenable to tuning via online learning techniques. Our results for first price and all-pay are the first revenue guarantees of non-truthful mechanisms in multi-dimensional environments; an open question in the literature [RST17]. 
    more » « less
  5. Auctions are a prevalent way to exchange goods and are well-studied for the exchange of rivalrous goods, but are less studied for non-rivalrous goods. I examine an auction framework where the good sold can be used simultaneously by multiple bidders if their use does not conflict with others; this simultaneous use directly affects the efficiency of the auction. A timely example includes the auctioning off of a radio spectrum by a licensed primary user to unlicensed secondary users who can use the spectrum simultaneously if they are located far enough apart to not cause interference. I examine a uniform price auction over non-conflicting groups and examine how non-rivalry impacts both efficiency and collusion. Conditions are given under which an auction over groups generates higher social welfare than an individual auction. Additional conditions are given under which collusion in a group auction results in higher prices.

     
    more » « less