skip to main content


Title: Riggs: Decentralized Sealed-Bid Auctions
We introduce the first practical protocols for fully decentralized sealed-bid auctions using timed commitments. Timed commitments ensure that the auction is finalized fairly even if all participants drop out after posting bids or if bidders collude to try to learn the bidder’s bid value. Our protocols rely on a novel non-malleable timed commitment scheme which efficiently supports range proofs to establish that bidders have sufficient funds to cover a hidden bid value. This allows us to penalize users who abandon bids for exactly the bid value, while supporting simultaneous bidding in multiple auctions with a shared collateral pool. Our protocols are concretely efficient and we have implemented them in an Ethereum- compatible smart contract which automatically enforces payment and delivery of an auctioned digital asset.  more » « less
Award ID(s):
2239975
PAR ID:
10543088
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Cremers, Cas; Kirda, Engin
Publisher / Repository:
ACM Conference on Computer and Communications Security (CCS)
Date Published:
Subject(s) / Keyword(s):
auctions timed commitments range proofs blockchains
Format(s):
Medium: X
Location:
Copenhagen, Denmark
Sponsoring Org:
National Science Foundation
More Like this
  1. Bonneau, Joseph ; Weinberg, S Matthew (Ed.)
    In a typical decentralized autonomous organization (DAO), people organize themselves into a group that is programmatically managed. DAOs can act as bidders in auctions (with ConstitutionDAO being one notable example), with a DAO’s bid typically treated by the auctioneer as if it had been submitted by an individual, without regard to any details of the internal DAO dynamics. The goal of this paper is to study auctions in which the bidders are DAOs. More precisely, we consider the design of two-level auctions in which the "participants" are groups of bidders rather than individuals. Bidders form DAOs to pool resources, but must then also negotiate the terms by which the DAO’s winnings are shared. We model the outcome of a DAO’s negotiations through an aggregation function (which aggregates DAO members' bids into a single group bid) and a budget-balanced cost-sharing mechanism (that determines DAO members' access to the DAO’s allocation and distributes the aggregate payment demanded from the DAO to its members). DAOs' bids are processed by a direct-revelation mechanism that has no knowledge of the DAO structure (and thus treats each DAO as an individual). Within this framework, we pursue two-level mechanisms that are incentive-compatible (with truthful bidding a dominant strategy for each member of each DAO) and approximately welfare-optimal. We prove that, even in the case of a single-item auction, the DAO dynamics hidden from the outer mechanism preclude incentive-compatible welfare maximization: No matter what the outer mechanism and the cost-sharing mechanisms used by DAOs, the welfare of the resulting two-level mechanism can be a ≈ ln n factor less than the optimal welfare (in the worst case over DAOs and valuation profiles). We complement this lower bound with a natural two-level mechanism that achieves a matching approximate welfare guarantee. This upper bound also extends to multi-item auctions in which individuals have additive valuations. Finally, we show that our positive results cannot be extended much further: Even in multi-item settings in which bidders have unit-demand valuations, truthful two-level mechanisms form a highly restricted class and as a consequence cannot guarantee any non-trivial approximation of the maximum social welfare. 
    more » « less
  2. null (Ed.)
    A profit‐maximizing seller has a single unit of a good to sell. The bidders have a pure common value that is drawn from a distribution that is commonly known. The seller does not know the bidders' beliefs about the value and thinks that beliefs are designed adversarially by Nature to minimize profit. We construct a strong maxmin solution to this joint mechanism design and information design problem, consisting of a mechanism, an information structure, and an equilibrium, such that neither the seller nor Nature can move profit in their respective preferred directions, even if the deviator can select the new equilibrium. The mechanism and information structure solve a family of maxmin mechanism design and minmax information design problems, regardless of how an equilibrium is selected. The maxmin mechanism takes the form of a proportional auction : each bidder submits a one‐dimensional bid, the aggregate allocation and aggregate payment depend on the aggregate bid, and individual allocations and payments are proportional to bids. We report a number of additional properties of the maxmin mechanisms, including what happens as the number of bidders grows large and robustness with respect to the prior over the value. 
    more » « less
  3. Bringmann, Karl ; Grohe, Martin ; Puppis, Gabriele ; Svensson, Ola (Ed.)
    We study information design in click-through auctions, in which the bidders/advertisers bid for winning an opportunity to show their ads but only pay for realized clicks. The payment may or may not happen, and its probability is called the click-through rate (CTR). This auction format is widely used in the industry of online advertising. Bidders have private values, whereas the seller has private information about each bidder’s CTRs. We are interested in the seller’s problem of partially revealing CTR information to maximize revenue. Information design in click-through auctions turns out to be intriguingly different from almost all previous studies in this space since any revealed information about CTRs will never affect bidders' bidding behaviors - they will always bid their true value per click - but only affect the auction’s allocation and payment rule. In some sense, this makes information design effectively a constrained mechanism design problem. Our first result is an FPTAS to compute an approximately optimal mechanism under a constant number of bidders. The design of this algorithm leverages Bayesian bidder values which help to "smooth" the seller’s revenue function and lead to better tractability. The design of this FPTAS is complex and primarily algorithmic. Our second main result pursues the design of "simple" mechanisms that are approximately optimal yet more practical. We primarily focus on the two-bidder situation, which is already notoriously challenging as demonstrated in recent works. When bidders' CTR distribution is symmetric, we develop a simple prior-free signaling scheme, whose construction relies on a parameter termed optimal signal ratio. The constructed scheme provably obtains a good approximation as long as the maximum and minimum of bidders' value density functions do not differ much. 
    more » « less
  4. Combinatorial auctions have found widespread application for allocating multiple items in the presence of complex bidder preferences. The enumerative exclusive OR (XOR) bid language is the de facto standard bid language for spectrum auctions and other applications, despite the difficulties, in larger auctions, of enumerating all the relevant packages or solving the resulting NP-hard winner determination problem. We introduce the flexible use and efficient licensing (FUEL) bid language, which was proposed for radio spectrum auctions to ease both communications and computations compared with XOR-based auctions. We model the resulting allocation problem as an integer program, discuss computational complexity, and conduct an extensive set of computational experiments, showing that the winner determination problem of the FUEL bid language can be solved reliably for large realistic-sized problem instances in less than half an hour on average. In contrast, auctions with an XOR bid language quickly become intractable even for much smaller problem sizes. We compare a sealed-bid FUEL auction to a sealed-bid auction with an XOR bid language and to a simultaneous clock auction. The sealed-bid auction with an XOR bid language incurs significant welfare losses because of the missing bids problem and computational hardness, the simultaneous clock auction leads to a substantially lower efficiency than FUEL because of the exposure problem. This paper was accepted by Axel Ockenfels. 
    more » « less
  5. Large fractions of online advertisements are sold via repeated second-price auctions. In these auctions, the reserve price is the main tool for the auctioneer to boost revenues. In this work, we investigate the following question: how can the auctioneer optimize reserve prices by learning from the previous bids while accounting for the long-term incentives and strategic behavior of the bidders? To this end, we consider a seller who repeatedly sells ex ante identical items via a second-price auction. Buyers’ valuations for each item are drawn independently and identically from a distribution F that is unknown to the seller. We find that if the seller attempts to dynamically update a common reserve price based on the bidding history, this creates an incentive for buyers to shade their bids, which can hurt revenue. When there is more than one buyer, incentive compatibility can be restored by using personalized reserve prices, where the personal reserve price for each buyer is set using the historical bids of other buyers. Such a mechanism asymptotically achieves the expected revenue obtained under the static Myerson optimal auction for F. Further, if valuation distributions differ across bidders, the loss relative to the Myerson benchmark is only quadratic in the size of such differences. We extend our results to a contextual setting where the valuations of the buyers depend on observed features of the items. When up-front fees are permitted, we show how the seller can determine such payments based on the bids of others to obtain an approximately incentive-compatible mechanism that extracts nearly all the surplus. 
    more » « less