skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantifying the Semantic Gap Between Serial and Parallel Programming
Automatic parallelizing compilers are often constrained in their transformations because they must conservatively respect data dependences within the program. Developers, on the other hand, often take advantage of domain-specific knowledge to apply transformations that modify data dependences but respect the application's semantics. This creates a semantic gap between the parallelism extracted automatically by compilers and manually by developers. Although prior work has proposed programming language extensions to close this semantic gap, their relative contribution is unclear and it is uncertain whether compilers can actually achieve the same performance as manually parallelized code when using them. We quantify this semantic gap in a set of sequential and parallel programs and leverage these existing programming-language extensions to empirically measure the impact of closing it for an automatic parallelizing compiler. This lets us achieve an average speedup of 12.6× on an Intel-based 28-core machine, matching the speedup obtained by the manually parallelized code. Further, we apply these extensions to widely used sequential system tools, obtaining 7.1× speedup on the same system.  more » « less
Award ID(s):
2118708 2107042 1908488 1763743 2119069 2028851
PAR ID:
10337772
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2021 IEEE International Symposium on Workload Characterization (IISWC)
Page Range / eLocation ID:
151 to 162
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Manually writing parallel programs is difficult and error-prone. Automatic parallelization could address this issue, but profitability can be limited by not having facts known only to the programmer. A parallelizing compiler that collaborates with the programmer can increase the coverage and performance of parallelization while reducing the errors and overhead associated with manual parallelization. Unlike collaboration involving analysis tools that report program properties or make parallelization suggestions to the programmer, decompiler-based collaboration could leverage the strength of existing parallelizing compilers to provide programmers with a natural compiler-parallelized starting point for further parallelization or refinement. Despite this potential, existing decompilers fail to do this because they do not generate portable parallel source code compatible with any compiler of the source language. This paper presents SPLENDID, an LLVM-IR to C/OpenMP decompiler that enables collaborative parallelization by producing standard parallel OpenMP code. Using published manual parallelization of the PolyBench benchmark suite as a reference, SPLENDID's collaborative approach produces programs twice as fast as either Polly-based automatic parallelization or manual parallelization alone. SPLENDID's portable parallel code is also more natural than that from existing decompilers, obtaining a 39x higher average BLEU score. 
    more » « less
  2. High-performance kernel libraries are critical to exploiting accelerators and specialized instructions in many applications. Because compilers are difficult to extend to support diverse and rapidly-evolving hardware targets, and automatic optimization is often insufficient to guarantee state-of-the-art performance, these libraries are commonly still coded and optimized by hand, at great expense, in low-level C and assembly. To better support development of high-performance libraries for specialized hardware, we propose a new programming language, Exo, based on the principle of exocompilation: externalizing target-specific code generation support and optimization policies to user-level code. Exo allows custom hardware instructions, specialized memories, and accelerator configuration state to be defined in user libraries. It builds on the idea of user scheduling to externalize hardware mapping and optimization decisions. Schedules are defined as composable rewrites within the language, and we develop a set of effect analyses which guarantee program equivalence and memory safety through these transformations. We show that Exo enables rapid development of state-of-the-art matrix-matrix multiply and convolutional neural network kernels, for both an embedded neural accelerator and x86 with AVX-512 extensions, in a few dozen lines of code each. 
    more » « less
  3. Modern programming languages offer abstractions that simplify software development and allow hardware to reach its full potential. These abstractions range from the well-established OpenMP language extensions to newer C++ features like smart pointers. To properly use these abstractions in an existing codebase, programmers must determine how a given source code region interacts with Program State Elements (PSEs) (i.e., the program's variables and memory locations). We call this process Program State Element Characterization (PSEC). Without tool support for PSEC, a programmer's only option is to manually study the entire codebase. We propose a profile-based approach that automates PSEC and provides abstraction recommendations to programmers. Because a profile-based approach incurs an impractical overhead, we introduce the Compiler and Runtime Memory Observation Tool (CARMOT), a PSEC-specific compiler co-designed with a parallel runtime. CARMOT reduces the overhead of PSEC by two orders of magnitude, making PSEC practical. We show that CARMOT's recommendations achieve the same speedup as hand-tuned OpenMP directives and avoid memory leaks with C++ smart pointers. From this, we argue that PSEC tools, such as CARMOT, can provide support for the rich ecosystem of modern programming language abstractions. 
    more » « less
  4. We introduce SLANG.D, an extension to the Slang shading language that incorporates first-class automatic differentiation support. The new shading language allows us to transform a Direct3D-based path tracer to be fully differentiable with minor modifications to existing code. SLANG.D enables a shared ecosystem between machine learning frameworks and pre-existing graphics hardware API-based rendering systems, promoting the interchange of components and ideas across these two domains. Our contributions include a differentiable type system designed to ensure type safety and semantic clarity in codebases that blend differentiable and non-differentiable code, language primitives that automatically generate both forward and reverse gradient propagation methods, and a compiler architecture that generates efficient derivative propagation shader code for graphics pipelines. Our compiler supports differentiating code that involves arbitrary control-flow, dynamic dispatch, generics and higher-order differentiation, while providing developers flexible control of checkpointing and gradient aggregation strategies for best performance. Our system allows us to differentiate an existing real-time path tracer, Falcor, with minimal change to its shader code. We show that the compiler-generated derivative kernels perform as efficiently as handwritten ones. In several benchmarks, the SLANG.D code achieves significant speedup when compared to prior automatic differentiation systems. 
    more » « less
  5. Aldrich, Jonathan; Salvaneschi, Guido (Ed.)
    Tensor processing infrastructures such as deep learning frameworks and specialized hardware accelerators have revolutionized how computationally intensive code from domains such as deep learning and image processing is executed and optimized. These infrastructures provide powerful and expressive abstractions while ensuring high performance. However, to utilize them, code must be written specifically using the APIs / ISAs of such software frameworks or hardware accelerators. Importantly, given the fast pace of innovation in these domains, code written today quickly becomes legacy as new frameworks and accelerators are developed, and migrating such legacy code manually is a considerable effort. To enable developers in leveraging such DSLs while preserving their current programming paradigm, we present Tenspiler, a verified-lifting-based compiler that uses program synthesis to translate sequential programs written in general-purpose programming languages (e.g., C++ or Python code that does not leverage any specialized framework or accelerator) into tensor operations. Central to Tenspiler is our carefully crafted yet simple intermediate language, named TensIR, that expresses tensor operations. TensIR enables efficient lifting, verification, and code generation. Unlike classical pattern-matching-based compilers, Tenspiler uses program synthesis to translate input code into TensIR, which is then compiled to the target API / ISA. Currently, Tenspiler already supports six DSLs, spanning a broad spectrum of software and hardware environments. Furthermore, we show that new backends can be easily supported by Tenspiler by adding simple pattern-matching rules for TensIR. Using 10 real-world code benchmark suites, our experimental evaluation shows that by translating code to be executed on 6 different software frameworks and hardware devices, Tenspiler offers on average 105× kernel and 9.65× end-to-end execution time improvement over the fully-optimized sequential implementation of the same benchmarks. 
    more » « less