skip to main content


Title: Streaming instability with multiple dust species – II. Turbulence and dust–gas dynamics at non-linear saturation
ABSTRACT The streaming instability is a fundamental process that can drive dust–gas dynamics and ultimately planetesimal formation in protoplanetary discs. As a linear instability, it has been shown that its growth with a distribution of dust sizes can be classified into two distinct regimes, fast- and slow-growth, depending on the dust-size distribution and the total dust-to-gas density ratio ϵ. Using numerical simulations of an unstratified disc, we bring three cases in different regimes into non-linear saturation. We find that the saturation states of the two fast-growth cases are similar to its single-species counterparts. The one with maximum dimensionless stopping time τs,max = 0.1 and ϵ = 2 drives turbulent vertical dust–gas vortices, while the other with τs,max = 2 and ϵ = 0.2 leads to radial traffic jams and filamentary structures of dust particles. The dust density distribution for the former is flat in low densities, while the one for the latter has a low-end cut-off. By contrast, the one slow-growth case results in a virtually quiescent state. Moreover, we find that in the fast-growth regime, significant dust segregation by size occurs, with large particles moving towards dense regions while small particles remain in the diffuse regions, and the mean radial drift of each dust species is appreciably altered from the (initial) drag-force equilibrium. The former effect may skew the spectral index derived from multiwavelength observations and change the initial size distribution of a pebble cloud for planetesimal formation. The latter along with turbulent diffusion may influence the radial transport and mixing of solid materials in young protoplanetary discs.  more » « less
Award ID(s):
1753168
NSF-PAR ID:
10337781
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
508
Issue:
4
ISSN:
0035-8711
Page Range / eLocation ID:
5538 to 5553
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT A recent study suggests that the streaming instability, one of the leading mechanisms for driving the formation of planetesimals, may not be as efficient as previously thought. Under some disc conditions, the growth time-scale of the instability can be longer than the disc lifetime when multiple dust species are considered. To further explore this finding, we use both linear analysis and direct numerical simulations with gas fluid and dust particles to mutually validate and study the unstable modes of the instability in more detail. We extend the previously studied parameter space by one order of magnitude in both the range of the dust-size distribution [Ts, min, Ts, max] and the total solid-to-gas mass ratio ε and introduce a third dimension with the slope q of the size distribution. We find that the fast-growth regime and the slow-growth regime are distinctly separated in the ε–Ts, max space, while this boundary is not appreciably sensitive to q or Ts, min. With a wide range of dust sizes present in the disc (e.g. Ts, min ≲ 10−3), the growth rate in the slow-growth regime decreases as more dust species are considered. With a narrow range of dust sizes (e.g. Ts, max/Ts, min = 5), on the other hand, the growth rate in most of the ε–Ts, max space is converged with increasing dust species, but the fast and the slow growth regimes remain clearly separated. Moreover, it is not necessary that the largest dust species dominate the growth of the unstable modes, and the smaller dust species can affect the growth rate in a complicated way. In any case, we find that the fast-growth regime is bounded by ε ≳ 1 or Ts, max ≳ 1, which may represent the favourable conditions for planetesimal formation. 
    more » « less
  2. null (Ed.)
    ABSTRACT We develop simple, physically motivated models for drag-induced dust–gas streaming instabilities, which are thought to be crucial for clumping grains to form planetesimals in protoplanetary discs. The models explain, based on the physics of gaseous epicyclic motion and dust–gas drag forces, the most important features of the streaming instability and its simple generalization, the disc settling instability. Some of the key properties explained by our models include the sudden change in the growth rate of the streaming instability when the dust-to-gas mass ratio surpasses one, the slow growth rate of the streaming instability compared to the settling instability for smaller grains, and the main physical processes underlying the growth of the most unstable modes in different regimes. As well as providing helpful simplified pictures for understanding the operation of an interesting and fundamental astrophysical fluid instability, our models may prove useful for analysing simulations and developing non-linear theories of planetesimal growth in discs. 
    more » « less
  3. Abstract

    Fine-grained dust rims (FGRs) surrounding chondrules in carbonaceous chondrites encode important information about early processes in the solar nebula. Here, we investigate the effect of the nebular environment on FGR porosity, dust size distribution, and grain alignment, comparing the results for rims comprised of ellipsoidal and spherical grains. We conduct numerical simulations in which FGRs grow by collisions between dust particles and chondrules in both neutral and ionized turbulent gas. The resultant rim morphology is related to the ratioϵof the electrostatic potential energy at the collision point to the relative kinetic energy between colliding particles. In general, largeϵleads to a large rim porosity, large rim grain size, and low growth rate. Dust rims comprised of ellipsoidal monomers initially grow faster in thickness than rims comprised of spherical monomers, due to their higher porosity. As the rims grow and obtain a greater electrostatic potential, repulsion becomes dominant, and this effect is reversed. Grain size coarsening toward the outer regions of the rims is observed for low- and high-ϵregimes, and is more pronounced in the ellipsoidal case, while for the medium-ϵregime, small monomers tend to be captured in the middle of the rims. In neutral environments, ellipsoidal grains have random orientations within the rim, while in charged environments ellipsoidal grains tend to align with maximum axial alignment forϵ= 0.15. The characterization of these FGR features provides a means to relate laboratory measurements of chondrite samples to the formation environment of the parent bodies.

     
    more » « less
  4. Abstract Recent observations have revealed a gallery of substructures in the dust component of nearby protoplanetary discs, including rings, gaps, spiral arms, and lopsided concentrations. One interpretation of these substructures is the existence of embedded planets. Not until recently, however, most of the modelling effort to interpret these observations ignored the dust back reaction to the gas. In this work, we conduct local-shearing-sheet simulations for an isothermal, inviscid, non-self-gravitating, razor-thin dusty disc with a planet on a fixed circular orbit. We systematically examine the parameter space spanned by planet mass (0.1Mth ≤ Mp ≤ 1Mth, where Mth is the thermal mass), dimensionless stopping time (10−3 ≤ τs ≤ 1), and solid abundance (0 < Z ≤ 1). We find that when the dust particles are tightly coupled to the gas (τs < 0.1), the spiral arms are less open and the gap driven by the planet becomes deeper with increasing Z, consistent with a reduced speed of sound in the approximation of a single dust-gas mixture. By contrast, when the dust particles are marginally coupled (0.1 ≲ τs ≲ 1), the spiral structure is insensitive to Z and the gap structure in the gas can become significantly skewed and unidentifiable. When the latter occurs, the pressure maximum radially outside of the planet is weakened or even extinguished, and hence dust filtration by a low-mass (Mp < Mth) planet could be reduced or eliminated. Finally, we find that the gap edges where the dust particles are accumulated as well as the lopsided large-scale vortices driven by a massive planet, if any, are unstable, and they are broken into numerous small-scale dust-gas vortices. 
    more » « less
  5. null (Ed.)
    ABSTRACT Recently, Squire & Hopkins showed that charged dust grains moving through magnetized gas under the influence of a uniform external force (such as radiation pressure or gravity) are subject to a spectrum of instabilities. Qualitatively distinct instability families are associated with different Alfvén or magnetosonic waves and drift or gyro motion. We present a suite of simulations exploring these instabilities, for grains in a homogeneous medium subject to an external acceleration. We vary parameters such as the ratio of Lorentz-to-drag forces on dust, plasma β, size scale, and acceleration. All regimes studied drive turbulent motions and dust-to-gas fluctuations in the saturated state, rapidly amplify magnetic fields into equipartition with velocity fluctuations, and produce instabilities that persist indefinitely (despite random grain motions). Different parameters produce diverse morphologies and qualitatively different features in dust, but the saturated gas state can be broadly characterized as anisotropic magnetosonic or Alfvénic turbulence. Quasi-linear theory can qualitatively predict the gas turbulent properties. Turbulence grows from small to large scales, and larger scale modes usually drive more vigorous gas turbulence, but dust velocity and density fluctuations are more complicated. In many regimes, dust forms structures (clumps, filaments, sheets) that reach extreme overdensities (up to ≫109 times mean), and exhibit substantial substructure even in nearly incompressible gas. These can be even more prominent at lower dust-to-gas ratios. In other regimes, dust self-excites scattering via magnetic fluctuations that isotropize and amplify dust velocities, producing fast, diffusive dust motions. 
    more » « less