Quasi-Newton algorithms are among the most popular iterative methods for solving unconstrained minimization problems, largely due to their favorable superlinear convergence property. However, existing results for these algorithms are limited as they provide either (i) a global convergence guarantee with an asymptotic superlinear convergence rate, or (ii) a local non-asymptotic superlinear rate for the case that the initial point and the initial Hessian approximation are chosen properly. In particular, no current analysis for quasi-Newton methods guarantees global convergence with an explicit superlinear convergence rate. In this paper, we close this gap and present the first globally convergent quasi-Newton method with an explicit non asymptotic superlinear convergence rate. Unlike classical quasi-Newton methods, we build our algorithm upon the hybrid proximal extragradient method and propose a novel online learning framework for updating the Hessian approximation matrices. Specifically, guided by the convergence analysis, we formulate the Hessian approximation update as an online convex optimization problem in the space of matrices, and we relate the bounded regret of the online problem to the superlinear convergence of our method.
more »
« less
Exploiting Local Convergence of Quasi-Newton Methods Globally: Adaptive Sample Size Approach
In this paper, we study the application of quasi-Newton methods for solving empirical risk minimization (ERM) problems defined over a large dataset. Traditional deterministic and stochastic quasi-Newton methods can be executed to solve such problems; however, it is known that their global convergence rate may not be better than first-order methods, and their local superlinear convergence only appears towards the end of the learning process. In this paper, we use an adaptive sample size scheme that exploits the superlinear convergence of quasi-Newton methods globally and throughout the entire learning process. The main idea of the proposed adaptive sample size algorithms is to start with a small subset of data points and solve their corresponding ERM problem within its statistical accuracy, and then enlarge the sample size geometrically and use the optimal solution of the problem corresponding to the smaller set as an initial point for solving the subsequent ERM problem with more samples. We show that if the initial sample size is sufficiently large and we use quasi-Newton methods to solve each subproblem, the subproblems can be solved superlinearly fast (after at most three iterations), as we guarantee that the iterates always stay within a neighborhood that quasi-Newton methods converge superlinearly. Numerical experiments on various datasets confirm our theoretical results and demonstrate the computational advantages of our method.
more »
« less
- Award ID(s):
- 2007668
- PAR ID:
- 10337825
- Date Published:
- Journal Name:
- Advances in Neural Information Processing Systems (NeurIPS 2021)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In this paper, we explore the non-asymptotic global convergence rates of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method implemented with exact line search. Notably, due to Dixon’s equivalence result, our findings are also applicable to other quasi-Newton methods in the convex Broyden class employing exact line search, such as the Davidon-Fletcher-Powell (DFP) method. Specifically, we focus on problems where the objective function is strongly convex with Lipschitz continuous gradient and Hessian. Our results hold for any initial point and any symmetric positive definite initial Hessian approximation matrix. The analysis unveils a detailed three-phase convergence process, characterized by distinct linear and superlinear rates, contingent on the iteration progress. Additionally, our theoretical findings demonstrate the trade-offs between linear and superlinear convergence rates for BFGS when we modify the initial Hessian approximation matrix, a phenomenon further corroborated by our numerical experiments.more » « less
-
Abstract In this paper, we study and prove the non-asymptotic superlinear convergence rate of the Broyden class of quasi-Newton algorithms which includes the Davidon–Fletcher–Powell (DFP) method and the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method. The asymptotic superlinear convergence rate of these quasi-Newton methods has been extensively studied in the literature, but their explicit finite–time local convergence rate is not fully investigated. In this paper, we provide a finite–time (non-asymptotic) convergence analysis for Broyden quasi-Newton algorithms under the assumptions that the objective function is strongly convex, its gradient is Lipschitz continuous, and its Hessian is Lipschitz continuous at the optimal solution. We show that in a local neighborhood of the optimal solution, the iterates generated by both DFP and BFGS converge to the optimal solution at a superlinear rate of$$(1/k)^{k/2}$$ , wherekis the number of iterations. We also prove a similar local superlinear convergence result holds for the case that the objective function is self-concordant. Numerical experiments on several datasets confirm our explicit convergence rate bounds. Our theoretical guarantee is one of the first results that provide a non-asymptotic superlinear convergence rate for quasi-Newton methods.more » « less
-
The purpose of this paper is to develop a practical strategy to accelerate Newton’s method in the vicinity of singular points. We present an adaptive safeguarding scheme with a tunable parameter, which we call adaptive γ-safeguarding, that one can use in tandem with Anderson acceleration to improve the performance of Newton’s method when solving problems at or near singular points. The key features of adaptive γ-safeguarding are that it converges locally for singular problems, and it can detect nonsingular problems automatically, in which case the Newton-Anderson iterates are scaled towards a standard Newton step. The result is a flexible algorithm that performs well for singular and nonsingular problems, and can recover convergence from both standard Newton and Newton-Anderson with the right parameter choice. This leads to faster local convergence compared to both Newton’s method, and Newton-Anderson without safeguarding, with effectively no additional computational cost. We demonstrate three strategies one can use when implementing Newton-Anderson and γ-safeguarded Newton-Anderson to solve parameter-dependent problems near singular points. For our benchmark problems, we take two parameter-dependent incompressible flow systems: flow in a channel and Rayleigh-Benard convection.more » « less
-
null (Ed.)In this paper, we consider distributed algorithms for solving the empirical risk minimization problem under the master/worker communication model. We develop a distributed asynchronous quasi-Newton algorithm that can achieve superlinear convergence. To our knowledge, this is the first distributed asynchronous algorithm with superlinear convergence guarantees. Our algorithm is communication-efficient in the sense that at every iteration the master node and workers communicate vectors of size 𝑂(𝑝), where 𝑝 is the dimension of the decision variable. The proposed method is based on a distributed asynchronous averaging scheme of decision vectors and gradients in a way to effectively capture the local Hessian information of the objective function. Our convergence theory supports asynchronous computations subject to both bounded delays and unbounded delays with a bounded time-average. Unlike in the majority of asynchronous optimization literature, we do not require choosing smaller stepsize when delays are huge. We provide numerical experiments that match our theoretical results and showcase significant improvement comparing to state-of-the-art distributed algorithms.more » « less
An official website of the United States government

