skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the Hypergraph Connectivity of Skeleta of Polytopes
We show that for every d-dimensional polytope, the hypergraph whose nodes are kfaces and whose hyperedges are (k +1)-faces of the polytope is strongly (d −k)-vertex connected, for each 0 ≤ k ≤ d − 1.  more » « less
Award ID(s):
1855726
PAR ID:
10337854
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Discrete & Computational Geometry
ISSN:
0179-5376
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A conjecture of Kalai asserts that for $$d\geq 4$$, the affine type of a prime simplicial $$d$$-polytope $$P$$ can be reconstructed from the space of affine $$2$$-stresses of $$P$$. We prove this conjecture for all $$d\geq 5$$. We also prove the following generalization: for all pairs $(i,d)$ with $$2\leq i\leq \lceil \frac d 2\rceil -1$$, the affine type of a simplicial $$d$$-polytope $$P$$ that has no missing faces of dimension $$\geq d-i+1$$ can be reconstructed from the space of affine $$i$$-stresses of $$P$$. A consequence of our proofs is a strengthening of the Generalized Lower Bound Theorem: it was proved by Nagel that for any simplicial $(d-1)$-sphere $$\Delta $$ and $$1\leq k\leq \lceil \frac {d}{2}\rceil -1$$, $$g_{k}(\Delta )$$ is at least as large as the number of missing $(d-k)$-faces of $$\Delta $$; here we show that, for $$1\leq k\leq \lfloor \frac {d}{2}\rfloor -1$$, equality holds if and only if $$\Delta $$ is $$k$$-stacked. Finally, we show that for $$d\geq 4$$, any simplicial $$d$$-polytope $$P$$ that has no missing faces of dimension $$\geq d-1$$ is redundantly rigid, that is, for each edge $$e$$ of $$P$$, there exists an affine $$2$$-stress on $$P$$ with a non-zero value on $$e$$. 
    more » « less
  2. Abstract The positive Grassmannian $$Gr^{\geq 0}_{k,n}$$ is a cell complex consisting of all points in the real Grassmannian whose Plücker coordinates are non-negative. In this paper we consider the image of the positive Grassmannian and its positroid cells under two different maps: the moment map$$\mu $$ onto the hypersimplex [ 31] and the amplituhedron map$$\tilde{Z}$$ onto the amplituhedron [ 6]. For either map, we define a positroid dissection to be a collection of images of positroid cells that are disjoint and cover a dense subset of the image. Positroid dissections of the hypersimplex are of interest because they include many matroid subdivisions; meanwhile, positroid dissections of the amplituhedron can be used to calculate the amplituhedron’s ‘volume’, which in turn computes scattering amplitudes in $$\mathcal{N}=4$$ super Yang-Mills. We define a map we call T-duality from cells of $$Gr^{\geq 0}_{k+1,n}$$ to cells of $$Gr^{\geq 0}_{k,n}$$ and conjecture that it induces a bijection from positroid dissections of the hypersimplex $$\Delta _{k+1,n}$$ to positroid dissections of the amplituhedron $$\mathcal{A}_{n,k,2}$$; we prove this conjecture for the (infinite) class of BCFW dissections. We note that T-duality is particularly striking because the hypersimplex is an $(n-1)$-dimensional polytope while the amplituhedron $$\mathcal{A}_{n,k,2}$$ is a $2k$-dimensional non-polytopal subset of the Grassmannian $$Gr_{k,k+2}$$. Moreover, we prove that the positive tropical Grassmannian is the secondary fan for the regular positroid subdivisions of the hypersimplex, and prove that a matroid polytope is a positroid polytope if and only if all 2D faces are positroid polytopes. Finally, toward the goal of generalizing T-duality for higher $$m$$, we define the momentum amplituhedron for any even $$m$$. 
    more » « less
  3. Motivated by the Erdős–Szekeres convex polytope conjecture in $$\mathbb{R}^{d}$$ , we initiate the study of the following induced Ramsey problem for hypergraphs. Given integers $$n>k\geqslant 5$$ , what is the minimum integer $$g_{k}(n)$$ such that any $$k$$ -uniform hypergraph on $$g_{k}(n)$$ vertices with the property that any set of $k+1$ vertices induces 0, 2, or 4 edges, contains an independent set of size $$n$$ . Our main result shows that $$g_{k}(n)>2^{cn^{k-4}}$$ , where $c=c(k)$ . 
    more » « less
  4. Let P be a set n points in a d-dimensional space. Tverberg theorem says that, if n is at least (k − 1)(d + 1), then P can be par- titioned into k sets whose convex hulls intersect. Partitions with this property are called Tverberg partitions. A partition has tolerance t if the partition remains a Tverberg partition after removal of any set of t points from P. A tolerant Tverberg partition exists in any dimensions provided that n is sufficiently large. Let N(d,k,t) be the smallest value of n such that tolerant Tverberg partitions exist for any set of n points in R d . Only few exact values of N(d,k,t) are known. In this paper, we study the problem of finding Radon partitions (Tver- berg partitions for k = 2) for a given set of points. We develop several algorithms and found new lower bounds for N(d,2,t). 
    more » « less
  5. We study the set of visible lattice points in multidimensional hypercubes. The problems we investigate mix together geometric, probabilistic and number theoretic tones. For example, we prove that almost all self-visible triangles with vertices in the lattice of points with integer coordinates in W = [0,N]^d are almost equilateral having all sides almost equal to √dN/√6, and the sine of the typical angle between rays from the visual spectra from the origin of W is, in the limit, equal to √7/4, as d and N/d tend to infinity. We also show that there exists an interesting number theoretic constant Λd,K, which is the limit probability of the chance that a K-polytope with vertices in the lattice W has all vertices visible from each other. 
    more » « less