Abstract The Fragile X Mental Retardation Protein (FMRP) is an RNA binding protein that regulates translation and is required for normal cognition. FMRP upregulates and downregulates the activity of microRNA (miRNA)-mediated silencing in the 3′ UTR of a subset of mRNAs through its interaction with RNA helicase Moloney leukemia virus 10 (MOV10). This bi-functional role is modulated through RNA secondary structures known as G-Quadruplexes. We elucidated the mechanism of FMRP’s role in suppressing Argonaute (AGO) family members’ association with mRNAs by mapping the interacting domains of FMRP, MOV10 and AGO and then showed that the RGG box of FMRP protects a subset of co-bound mRNAs from AGO association. The N-terminus of MOV10 is required for this protection: its over-expression leads to increased levels of the endogenous proteins encoded by this co-bound subset of mRNAs. The N-terminus of MOV10 also leads to increased RGG box-dependent binding to the SC1 RNA G-Quadruplex and is required for outgrowth of neurites. Lastly, we showed that FMRP has a global role in miRNA-mediated translational regulation by recruiting AGO2 to a large subset of RNAs in mouse brain. 
                        more » 
                        « less   
                    
                            
                            FMRP and MOV10 regulate Dicer1 expression and dendrite development
                        
                    
    
            Fragile X syndrome results from the loss of expression of the Fragile X Mental Retardation Protein (FMRP). FMRP and RNA helicase Moloney Leukemia virus 10 (MOV10) are important Argonaute (AGO) cofactors for miRNA-mediated translation regulation. We previously showed that MOV10 functionally associates with FMRP. Here we quantify the effect of reduced MOV10 and FMRP expression on dendritic morphology. Murine neurons with reduced MOV10 and FMRP phenocopied Dicer1 KO neurons which exhibit impaired dendritic maturation Hong J (2013), leading us to hypothesize that MOV10 and FMRP regulate DICER expression. In cells and tissues expressing reduced MOV10 or no FMRP, DICER expression was significantly reduced. Moreover, the Dicer1 mRNA is a Cross-Linking Immunoprecipitation (CLIP) target of FMRP Darnell JC (2011), MOV10 Skariah G (2017) and AGO2 Kenny PJ (2020). MOV10 and FMRP modulate expression of DICER1 mRNA through its 3’untranslated region (UTR) and introduction of a DICER1 transgene restores normal neurite outgrowth in the Mov10 KO neuroblastoma Neuro2A cell line and branching in MOV10 heterozygote neurons. Moreover, we observe a global reduction in AGO2-associated microRNAs isolated from Fmr1 KO brain. We conclude that the MOV10-FMRP-AGO2 complex regulates DICER expression, revealing a novel mechanism for regulation of miRNA production required for normal neuronal morphology. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1855474
- PAR ID:
- 10337883
- Editor(s):
- Bardoni, Barbara
- Date Published:
- Journal Name:
- PLOS ONE
- Volume:
- 16
- Issue:
- 11
- ISSN:
- 1932-6203
- Page Range / eLocation ID:
- e0260005
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            AMPA-type glutamate receptors (AMPARs) are tetrameric ligand-gated channels made up of combinations of GluA1-4 subunits and play important roles in synaptic transmission and plasticity. Here, we have investigated the development of AMPAR-mediated synaptic transmission in the hippocampus of the Fmr1 knock-out (KO) mouse, a widely used model of Fragile X syndrome (FXS). FXS is the leading monogenic cause of intellectual disability and autism spectrum disorders (ASD) and it is considered a neurodevelopmental disorder. For that reason, we investigated synaptic properties and dendritic development in animals from an early stage when synapses are starting to form up to adulthood. We found that hippocampal CA1 pyramidal neurons in the Fmr1-KO mouse exhibit a higher AMPAR-NMDAR ratio early in development but reverses to normal values after P13. This increase was accompanied by a larger presence of the GluA2-subunit in synaptic AMPARs that will lead to altered Ca 2+ permeability of AMPARs that could have a profound impact upon neural circuits, learning, and diseases. Following this, we found that young KO animals lack Long-term potentiation (LTP), a well-understood model of synaptic plasticity necessary for proper development of circuits, and exhibit an increased frequency of spontaneous miniature excitatory postsynaptic currents, a measure of synaptic density. Furthermore, post hoc morphological analysis of recorded neurons revealed altered dendritic branching in the KO group. Interestingly, all these anomalies are transitory and revert to normal values in older animals. Our data suggest that loss of FMRP during early development leads to temporary upregulation of the GluA2 subunit and this impacts synaptic plasticity and altering morphological dendritic branching.more » « less
- 
            MicroRNAs (miRNAs) are a class of small non-coding RNAs that repress gene expression. In plants, the RNase III enzyme Dicer-like (DCL1) processes primary miRNAs (pri-miRNAs) into miRNAs. Here, we show that SMALL1 (SMA1), a homolog of the DEAD-box pre-mRNA splicing factor Prp28, plays essential roles in miRNA biogenesis in Arabidopsis. A hypomorphic sma1-1 mutation causes growth defects and reduces miRNA accumulation correlated with increased target transcript levels. SMA1 interacts with the DCL1 complex and positively influences pri-miRNA processing. Moreover, SMA1 binds the promoter region of genes encoding pri-miRNAs (MIRs) and is required for MIR transcription. Furthermore, SMA1 also enhances the abundance of the DCL1 protein levels through promoting the splicing of the DCL1 pre-mRNAs. Collectively, our data provide new insights into the function of SMA1/Prp28 in regulating miRNA abundance in plants.more » « less
- 
            MicroRNAs (miRNAs) regulate the levels of translation of messenger RNAs (mRNAs). At present, the major parameter that can explain the selection of the target mRNA and the efficiency of translation repression is the base pairing between the ‘seed’ region of the miRNA and its counterpart mRNA1. Here we use R1ρ relaxation-dispersion nuclear magnetic resonance2 and molecular simulations3 to reveal a dynamic switch—based on the rearrangement of a single base pair in the miRNA–mRNA duplex—that elongates a weak five-base-pair seed to a complete seven-base-pair seed. This switch also causes coaxial stacking of the seed and supplementary helix fitting into human Argonaute 2 protein (Ago2), reminiscent of an active state in prokaryotic Ago4,5. Stabilizing this transient state leads to enhanced repression of the target mRNA in cells, revealing the importance of this miRNA–mRNA structure. Our observations tie together previous findings regarding the stepwise miRNA targeting process from an initial ‘screening’ state to an ‘active’ state, and unveil the role of the RNA duplex beyond the seed in Ago2.more » « less
- 
            Abstract MOV10 is an RNA helicase that associates with the RNA‐induced silencing complex component Argonaute (AGO), likely resolving RNA secondary structures. MOV10 also binds the Fragile X mental retardation protein to block AGO2 binding at some sites and associates with UPF1, a principal component of the nonsense‐mediated RNA decay pathway. MOV10 is widely expressed and has a key role in the cellular response to viral infection and in suppressing retrotransposition. Posttranslational modifications of MOV10 include ubiquitination, which leads to stimulation‐dependent degradation, and phosphorylation, which has an unknown function. MOV10 localizes to the nucleus and/or cytoplasm in a cell type‐specific and developmental stage‐specific manner. Knockout ofMov10leads to embryonic lethality, underscoring an important role in development where it is required for the completion of gastrulation. MOV10 is expressed throughout the organism; however, most studies have focused on germline cells and neurons. In the testes, the knockdown ofMov10disrupts proliferation of spermatogonial progenitor cells. In brain, MOV10 is significantly elevated postnatally and binds mRNAs encoding cytoskeleton and neuron projection proteins, suggesting an important role in neuronal architecture. HeterozygousMov10mutant mice are hyperactive and anxious and their cultured hippocampal neurons have reduced dendritic arborization. Zygotic knockdown ofMov10inXenopus laeviscauses abnormal head and eye development and mislocalization of neuronal precursors in the brain. Thus, MOV10 plays a vital role during development, defense against viral infection and in neuronal development and function: its many roles and regulation are only beginning to be unraveled. This article is categorized under:RNA Interactions with Proteins and Other Molecules > RNA‐Protein ComplexesRNA Interactions with Proteins and Other Molecules > Protein‐RNA Interactions: Functional Implicationsmore » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    