Abstract Temperate lakes experience variation in mixing and stratification that affects the distributions, activities, abundances, and diversity of plankton communities. We examined temporal and vertical changes in the composition of planktonic microorganisms (including Bacteria and Archaea) in oligotrophic Flathead Lake, Montana. Using a combination of approaches that included 16S rRNA gene sequencing and flow cytometric determination of cell abundances, we found that the microbial community was responsive to variations in stratification and mixing at time scales ranging from episodic (scale of days) to seasonal. However, the impact of such physical dynamics varied among taxa, likely reflecting taxa‐specific responses to environmental changes that coincide with stratification and mixing (e.g., light availability and nutrient supply). During the early spring, periods of relatively short‐term (< 7 d) intermittency in stratification and mixing influenced the vertical distributions of specific microbial taxa, notably including the cyanobacteria. These events highlight time scales of biological responses to high‐frequency variations associated with lake stratification and mixing, particularly during the transition to the growing season in the early spring.
more »
« less
Phenological shifts in lake stratification under climate change
Abstract One of the most important physical characteristics driving lifecycle events in lakes is stratification. Already subtle variations in the timing of stratification onset and break-up (phenology) are known to have major ecological effects, mainly by determining the availability of light, nutrients, carbon and oxygen to organisms. Despite its ecological importance, historic and future global changes in stratification phenology are unknown. Here, we used a lake-climate model ensemble and long-term observational data, to investigate changes in lake stratification phenology across the Northern Hemisphere from 1901 to 2099. Under the high-greenhouse-gas-emission scenario, stratification will begin 22.0 ± 7.0 days earlier and end 11.3 ± 4.7 days later by the end of this century. It is very likely that this 33.3 ± 11.7 day prolongation in stratification will accelerate lake deoxygenation with subsequent effects on nutrient mineralization and phosphorus release from lake sediments. Further misalignment of lifecycle events, with possible irreversible changes for lake ecosystems, is also likely.
more »
« less
- Award ID(s):
- 1759865
- PAR ID:
- 10338055
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Lake heatwaves (extreme hot water events) can substantially disrupt aquatic ecosystems. Although surface heatwaves are well studied, their vertical structures within lakes remain largely unexplored. Here we analyse the characteristics of subsurface lake heatwaves (extreme hot events occurring below the surface) using a spatiotemporal modelling framework. Our findings reveal that subsurface heatwaves are frequent, often longer lasting but less intense than surface events. Deep-water heatwaves (bottom heatwaves) have increased in frequency (7.2 days decade−1), duration (2.1 days decade−1) and intensity (0.2 °C days decade−1) over the past 40 years. Moreover, vertically compounding heatwaves, where extreme heat occurs simultaneously at the surface and bottom, have risen by 3.3 days decade−1. By the end of the century, changes in heatwave patterns, particularly under high emissions, are projected to intensify. These findings highlight the need for subsurface monitoring to fully understand and predict the ecological impacts of lake heatwaves.more » « less
-
This dataset contains temperature data from two Onset HOBO temperature pendant loggers installed in Green Lake 4’s inlet and outlet from summer 2019. High-resolution water quality data are fundamental to observing rapid ecological responses to meteorology, climate, and other disturbance events. The inlet and outlet temperature data collected here, together with Niwot Ridge’s buoy deployed in Green Lake 4, allow us to understand lake hydrology, water budget, and stratification and mixing dynamics that drive seasonal in-lake processes to understand effects of warming.more » « less
-
Abstract The concentration of dissolved oxygen (DO) is an important attribute of aquatic ecosystems, influencing habitat, drinking water quality, biodiversity, nutrient biogeochemistry, and greenhouse gas emissions. While average summer DO concentrations are declining in lakes across the temperate zone, much remains unknown about seasonal factors contributing to deepwater DO losses. It is unclear whether declines are related to increasing rates of seasonal DO depletion or changes in seasonal stratification that limit re‐oxygenation of deep waters. Furthermore, despite the presence of important biological and ecological DO thresholds, there has been no large‐scale assessment of changes in the amount of habitat crossing these thresholds, limiting the ability to understand the consequences of observed DO losses. We used a dataset from >400 widely distributed lakes to identify the drivers of DO losses and quantify the frequency and volume of lake water crossing biologically and ecologically important threshold concentrations ranging from 5 to 0.5 mg/L. Our results show that while there were no consistent changes over time in seasonal DO depletion rates, over three‐quarters of lakes exhibited an increase in the duration of stratification, providing more time for seasonal deepwater DO depletion to occur. As a result, most lakes have experienced summertime increases in the amount of water below all examined thresholds in deepwater DO concentration, with increases in the proportion of the water column below thresholds ranging between 0.9% and 1.7% per decade. In the 30‐day period preceding the end of stratification, increases were greater at >2.2% per decade and >70% of analyzed lakes experienced increases in the amount of oxygen‐depleted water. These results indicate ongoing climate‐induced increases in the duration of stratification have already contributed to reduction of habitat for many species, likely increased internal nutrient loading, and otherwise altered lake chemistry. Future warming is likely to exacerbate these trends.more » « less
-
Abstract Water temperature, ice cover, and lake stratification are important physical properties of lakes and reservoirs that control mixing as well as bio-geo-chemical processes and thus influence the water quality. We used an ensemble of vertical one-dimensional hydrodynamic lake models driven with regional climate projections to calculate water temperature, stratification, and ice cover under the A1B emission scenario for the German drinking water reservoir Lichtenberg. We used an analysis of variance method to estimate the contributions of the considered sources of uncertainty on the ensemble output. For all simulated variables, epistemic uncertainty, which is related to the model structure, is the dominant source throughout the simulation period. Nonetheless, the calculated trends are coherent among the five models and in line with historical observations. The ensemble predicts an increase in surface water temperature of 0.34 K per decade, a lengthening of the summer stratification of 3.2 days per decade, as well as decreased probabilities of the occurrence of ice cover and winter inverse stratification by 2100. These expected changes are likely to influence the water quality of the reservoir. Similar trends are to be expected in other reservoirs and lakes in comparable regions.more » « less
An official website of the United States government

