Abstract A unique combination of data collected from fixed instruments, spatial surveys, and a long‐term observing network in the Hudson River demonstrate the importance of spatial and temporal variations in atmospheric gas flux. The atmospheric exchanges of oxygen (O2) and carbon dioxide (CO2) exhibit variability at a range of time scales including pronounced modulation driven by spring‐neap variations in stratification and mixing. During weak neap tides, bottom waters become enriched in pCO2and depleted in dissolved oxygen because strong stratification limits vertical mixing and isolates sub‐pycnocline water from atmospheric exchange. Estuarine circulation also is enhanced during neap tides so that bottom waters, and their associated dissolved gases, are transported up‐estuary. Strong mixing during spring tides effectively ventilates bottom waters resulting in enhanced CO2evasion and O2invasion. The spring‐neap modulation in the estuarine portion of the Hudson River is enhanced because fortnightly variations in mixing have a strong influence on phytoplankton dynamics, allowing strong blooms to occur during weak neap tides. During blooms, periods of CO2invasion and O2evasion occur over much of the lower stratified estuary. The along‐estuary distribution of stratification, which decreases up‐estuary, favors enhanced gas exchange near the limit of salt, where vertical stratification is absent. This region, which we call the estuarine gas exchange maximum (EGM), results from the convergence in bottom transport and is analogous to the estuarine turbidity maximum (ETM). Much like the ETM, the EGM is likely to be a common feature in many partially mixed and stratified estuarine systems.
more »
« less
Mixing‐driven changes in distributions and abundances of planktonic microorganisms in a large, oligotrophic lake
Abstract Temperate lakes experience variation in mixing and stratification that affects the distributions, activities, abundances, and diversity of plankton communities. We examined temporal and vertical changes in the composition of planktonic microorganisms (including Bacteria and Archaea) in oligotrophic Flathead Lake, Montana. Using a combination of approaches that included 16S rRNA gene sequencing and flow cytometric determination of cell abundances, we found that the microbial community was responsive to variations in stratification and mixing at time scales ranging from episodic (scale of days) to seasonal. However, the impact of such physical dynamics varied among taxa, likely reflecting taxa‐specific responses to environmental changes that coincide with stratification and mixing (e.g., light availability and nutrient supply). During the early spring, periods of relatively short‐term (< 7 d) intermittency in stratification and mixing influenced the vertical distributions of specific microbial taxa, notably including the cyanobacteria. These events highlight time scales of biological responses to high‐frequency variations associated with lake stratification and mixing, particularly during the transition to the growing season in the early spring.
more »
« less
- PAR ID:
- 10487431
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Limnology and Oceanography
- Volume:
- 69
- Issue:
- 3
- ISSN:
- 0024-3590
- Format(s):
- Medium: X Size: p. 604-620
- Size(s):
- p. 604-620
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Reductions in ice cover duration and earlier ice breakup are two of the most prevalent responses to climate warming in lakes in recent decades. In dimictic lakes, the subsequent periods of spring mixing and summer stratification are both likely to change in response to these phenological changes in ice cover. Here, we used a modeling approach to simulate the effect of changes in latitude on long‐term trends in duration of ice cover, spring mixing, and summer stratification by “moving” a well‐studied lake across a range of latitudes in North America (35.2°N to 65.7°N). We found a changepoint relationship between the timing of ice breakup vs. spring mixing duration on 09 May. When ice breakup occurred before 09 May, which routinely occurred at latitudes < 47°N, spring mixing was longer and more variable; when ice breakup occurred after 09 May at latitudes > 47°N, spring mixing averaged 1 day with low variability. In contrast, the duration of summer stratification showed a relatively slower rate of increase when ice breakup occurred before 09 May (< 47°N) compared to a 109% faster rate of increase when ice breakup was after 09 May (> 47°N). Projected earlier ice breakup can result in important nonlinear changes in the relative duration of spring mixing and summer stratification, which can lead to mixing regime shifts that influence the severity of oxygen depletion differentially across latitudes.more » « less
-
Anthropogenic freshwater salinization affects thousands of lakes worldwide, and yet little is known about how salt loading may shift timing of lake stratification and spring mixing in dimictic lakes. Here, we investigate the impact of salinization on mixing in Lakes Mendota and Monona, Wisconsin, by deploying under-ice buoys to record salinity gradients, using an analytical approach to quantify salinity thresholds that prevent spring mixing, and running an ensemble of vertical one-dimensional hydrodynamic lake models (GLM, GOTM, and Simstrat) to investigate the long-term impact of winter salt loading on mixing and stratification. We found that spring salinity gradients between surface and bottom waters persist up to a month after ice-off, and that theory predicts a salinity gradient of 1.3–1.4 g kg-1 would prevent spring mixing. Numerical models project that salt loading delays spring mixing and increases water column stability, with ramifications for oxygenation of bottom waters, biogeochemistry, and lake habitability.more » « less
-
Abstract The salinity structure in an estuary is controlled by time‐dependent mixing processes. However, the locations and temporal variability of where significant mixing occurs is not well‐understood. Here we utilize a tracer variance approach to demonstrate the spatial and temporal structure of salinity mixing in the Hudson River Estuary. We run a 4‐month hydrodynamic simulation of the tides, currents, and salinity that captures the spring‐neap tidal variability as well as wind‐driven and freshwater flow events. On a spring‐neap time scale, salinity variance dissipation (mixing) occurs predominantly during the transition from neap to spring tides. On a tidal time scale, 60% of the salinity variance dissipation occurs during ebb tides and 40% during flood tides. Spatially, mixing during ebbs occurs primarily where lateral bottom salinity fronts intersect the bed at the transition from the main channel to adjacent shoals. During ebbs, these lateral fronts form seaward of constrictions located at multiple locations along the estuary. During floods, mixing is generated by a shear layer elevated in the water column at the top of the mixed bottom boundary layer, where variations in the along channel density gradients locally enhance the baroclinic pressure gradient leading to stronger vertical shear and more mixing. For both ebb and flood, the mixing occurs at the location of overlap of strong vertical stratification and eddy diffusivity, not at the maximum of either of those quantities. This understanding lends a new insight to the spatial and time dependence of the estuarine salinity structure.more » « less
-
Abstract Floodplain lakes are widespread and ecologically important throughout tropical river systems, however data are rare that describe how temporal variations in hydrological, meteorological and optical conditions moderate stratification and mixing in these shallow lakes. Using time series measurements of meteorology and water‐column temperatures from 17 several day campaigns spanning two hydrological years in a representative Amazon floodplain lake, we calculated surface energy fluxes and thermal stratification, and applied and evaluated a 3‐dimensional hydrodynamic model. The model successfully simulated diel cycles in thermal structure characterized by buoyancy frequency, depth of the actively mixing layer, and other terms associated with the surface energy budget. Diurnal heating with strong stratification and nocturnal mixing were common; despite considerable heat loss at night, the strong stratification during the day meant that mixing only infrequently extended to the bottom at night. Simulations indicated that the diurnal thermocline up and downwelled creating lake‐wide differences in near‐surface temperatures and mixing depths. Infrequent full mixing creates conditions conducive to anoxia in these shallow lakes given their warm temperatures.more » « less