Gaussian Processes (GP) are a powerful framework for modeling expensive black-box functions and have thus been adopted for various challenging modeling and optimization problems. In GP-based modeling, we typically default to a stationary covariance kernel to model the underlying function over the input domain, but many real-world applications, such as controls and cyber-physical system safety, often require modeling and optimization of functions that are locally stationary and globally non-stationary across the domain; using standard GPs with a stationary kernel often yields poor modeling performance in such scenarios. In this paper, we propose a novel modeling technique called Class-GP (Class Gaussian Process) to model a class of heterogeneous functions, i.e., non-stationary functions which can be divided into locally stationary functions over the partitions of input space with one active stationary function in each partition. We provide theoretical insights into the modeling power of Class-GP and demonstrate its benefits over standard modeling techniques via extensive empirical evaluations.
more »
« less
Spatio-Temporal Expanding Distance Asymptotic Framework for Locally Stationary Processes
Spatio-temporal data indexed by sampling locations and sampling time points are encountered in many scientific disciplines such as climatology, environ- mental sciences, and public health. Here, we propose a novel spatio-temporal expanding distance (STED) asymptotic framework for studying the proper- ties of statistical inference for nonstationary spatio-temporal models. In particular, to model spatio-temporal dependence, we develop a new class of locally stationary spatio-temporal covariance functions. The STED asymp- totic framework has a fixed spatio-temporal domain for spatio-temporal pro- cesses that are globally nonstationary in a rescaled fixed domain and locally stationary in a distance expanding domain. The utility of STED is illus- trated by establishing the asymptotic properties of the maximum likelihood estimation for a general class of spatio-temporal covariance functions. A simulation study suggests sound finite-sample properties and the method is applied to a sea-surface temperature dataset.
more »
« less
- PAR ID:
- 10338200
- Date Published:
- Journal Name:
- Sankhya A
- ISSN:
- 0976-836X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Harmonizable processes are a class of nonstationary time series, that are characterized by their dependence between different frequencies of a time series. The covariance between two frequencies is the dual frequency spectral density, an object analogous to the spectral density function. Local stationarity is another popular form of nonstationarity, though thus far, little attention has been paid to the dual frequency spectral density of a locally stationary process. The focus of this paper is on the dual frequency spectral density of local stationary time series and locally periodic stationary time series, its natural extension. We show that there are some subtle but important differences between the dual frequency spectral density of an almost periodic stationary process and a locally periodic stationary time series. Estimation of the dual frequency spectral density is typically done by smoothing the dual frequency periodogram. We study the sampling properties of this estimator under the assumption of locally periodic stationarity. In particular, we obtain a Gaussian approximation for the smoothed dual frequency periodogram over a group of frequencies, allowing for the number of frequency lags to grow with sample size. These results are used to test for correlation between different frequency bands in the time series. The variance of the smooth dual frequency periodogram is quite complex. However, by identifying which covariances are the most pertinent we propose a nonparametric method for consistently estimating the variance. This is necessary for constructing confidence intervals or testing aspects of the dual frequency spectral density. Simulations are given to illustrate our results.more » « less
-
For multivariate stationary time series many important properties, such as partial correlation, graphical models and autoregressive representations are encoded in the inverse of its spectral density matrix. This is not true for nonstationary time series, where the pertinent information lies in the inverse infinite dimensional covariance matrix operator associated with the multivariate time series. This necessitates the study of the covariance of a multivariate nonstationary time series and its relationship to its inverse. We show that if the rows/columns of the infinite dimensional covariance matrix decay at a certain rate then the rate (up to a factor) transfers to the rows/columns of the inverse covariance matrix. This is used to obtain a nonstationary autoregressive representation of the time series and a Baxter-type bound between the parameters of the autoregressive infinite representation and the corresponding finite autoregressive projection. The aforementioned results lay the foundation for the subsequent analysis of locally stationary time series. In particular, we show that smoothness properties on the covariance matrix transfer to (i) the inverse covariance (ii) the parameters of the vector autoregressive representation and (iii) the partial covariances. All results are set up in such a way that the constants involved depend only on the eigenvalue of the covariance matrix and can be applied in the high-dimensional settings with non-diverging eigenvalues.more » « less
-
Information from frequency bands in biomedical time series provides useful summaries of the observed signal. Many existing methods consider summaries of the time series obtained over a few well-known, pre-defined frequency bands of interest. However, there is a dearth of data-driven methods for identifying frequency bands that optimally summarize frequency-domain information in the time series. A new method to identify partition points in the frequency space of a multivariate locally stationary time series is proposed. These partition points signify changes across frequencies in the time-varying behavior of the signal and provide frequency band summary measures that best preserve nonstationary dynamics of the observed series. An $$L_2$$-norm based discrepancy measure that finds differences in the time-varying spectral density matrix is constructed, and its asymptotic properties are derived. New nonparametric bootstrap tests are also provided to identify significant frequency partition points and to identify components and cross-components of the spectral matrix exhibiting changes over frequencies. Finite-sample performance of the proposed method is illustrated via simulations. The proposed method is used to develop optimal frequency band summary measures for characterizing time-varying behavior in resting-state electroencephalography time series, as well as identifying components and cross-components associated with each frequency partition point.more » « less
-
The proliferation of Internet-enabled smartphones has ushered in an era where events are reported on social media websites such as Twitter and Facebook. However, the short text nature of social media posts, combined with a large volume of noise present in such datasets makes event detection challenging. This problem can be alleviated by using other sources of information, such as news articles, that employ a precise and factual vocabulary, and are more descriptive in nature. In this paper, we propose Spatio-Temporal Event Detection (STED), a probabilistic model to discover events, their associated topics, time of occurrence, and the geospatial distribution from multiple data sources, such as news and Twitter. The joint modeling of news and Twitter enables our model to distinguish events from other noisy topics present in Twitter data. Furthermore, the presence of geocoordinates and timestamps in tweets helps find the spatio-temporal distribution of the events. We evaluate our model on a large corpus of Twitter and news data, and our experimental results show that STED can effectively discover events, and outperforms state-of-the-art techniques.more » « less
An official website of the United States government

