This content will become publicly available on July 1, 2023
 Award ID(s):
 1802139
 Publication Date:
 NSFPAR ID:
 10338312
 Journal Name:
 Mathematical Proceedings of the Cambridge Philosophical Society
 Volume:
 173
 Issue:
 1
 Page Range or eLocationID:
 189 to 200
 ISSN:
 03050041
 Sponsoring Org:
 National Science Foundation
More Like this

Abstract This paper is concerned with the phase estimation algorithm in quantum computing, especially the scenarios where (1) the input vector is not an eigenvector; (2) the unitary operator is approximated by Trotter or Taylor expansion methods; (3) random approximations are used for the unitary operator. We characterize the probability of computing the phase values in terms of the consistency error, including the residual error, Trotter splitting error, or statistical meansquare error. In the first two cases, we show that in order to obtain the phase value with error less or equal to 2 − n and probability at least 1 − ϵ , the required number of qubits is t ⩾ n + log 2 + δ 2 2 ϵ Δ E 2 . The parameter δ quantifies the error associated with the inexact eigenvector and/or the unitary operator, and Δ E characterizes the spectral gap, i.e., the separation from the rest of the phase values. This analysis generalizes the standard result (Cleve et al 1998 Phys. Rev X 11 011020; Nielsen and Chuang 2002 Quantum Computation and Quantum Information ) by including these effects. More importantly, it shows that when δ < Δ E , the complexity remains themore »

Abstract We investigate the asymptotics of the total number of simple $(4a+1)$knots with Alexander polynomial of the form $mt^2 +(12m) t + m$ for some nonzero $m \in [X, X]$. Using Kearton and Levine’s classification of simple knots, we give equivalent algebraic and arithmetic formulations of this counting question. In particular, this count is the same as the total number of ${\mathbb{Z}}[1/m]$equivalence classes of binary quadratic forms of discriminant $14m$, for $m$ running through the same range. Our heuristics, based on the Cohen–Lenstra heuristics, suggest that this total is asymptotic to $X^{3/2}/\log X$ and the largest contribution comes from the values of $m$ that are positive primes. Using sieve methods, we prove that the contribution to the total coming from $m$ positive prime is bounded above by $O(X^{3/2}/\log X)$ and that the total itself is $o(X^{3/2})$.

In this paper, we make partial progress on a function field version of the dynamical uniform boundedness conjecture for certain onedimensional families ${\mathcal{F}}$ of polynomial maps, such as the family $f_{c}(x)=x^{m}+c$ , where $m\geq 2$ . We do this by making use of the dynatomic modular curves $Y_{1}(n)$ (respectively $Y_{0}(n)$ ) which parametrize maps $f$ in ${\mathcal{F}}$ together with a point (respectively orbit) of period $n$ for $f$ . The key point in our strategy is to study the set of primes $p$ for which the reduction of $Y_{1}(n)$ modulo $p$ fails to be smooth or irreducible. Morton gave an algorithm to construct, for each $n$ , a discriminant $D_{n}$ whose list of prime factors contains all the primes of bad reduction for $Y_{1}(n)$ . In this paper, we refine and strengthen Morton’s results. Specifically, we exhibit two criteria on a prime $p$ dividing $D_{n}$ : one guarantees that $p$ is in fact a prime of bad reduction for $Y_{1}(n)$ , yet this same criterion implies that $Y_{0}(n)$ is geometrically irreducible. The other guarantees that the reduction of $Y_{1}(n)$ modulo $p$ is actually smooth. As an application of the second criterion, we extend results of Morton, Flynn, Poonen, Schaefer, andmore »

Allsolidstate batteries (ASSBs) have garnered increasing attention due to the enhanced safety, featuring nonflammable solid electrolytes as well as the potential to achieve high energy density. 1 The advancement of the ASSBs is expected to provide, arguably, the most straightforward path towards practical, highenergy, and rechargeable batteries based on metallic anodes. 1 However, the sluggish ion transmission at the cathodeelectrolyte (solid/solid) interface would result in the high resistant at the contact and limit the practical implementation of these all solidstate materials in real world batteries. 2 Several methods were suggested to enhance the kinetic condition of the ion migration between the cathode and the solid electrolyte (SE). 3 A composite strategy that mixes active materials and SEs for the cathode is a general way to decrease the ion transmission barrier at the cathodeelectrolyte interface. 3 The active material concentration in the cathode is reduced as much as the SE portion increases by which the energy density of the ASSB is restricted. In addition, the mixing approach generally accompanies lattice mismatches between the cathode active materials and the SE, thus providing only limited improvements, which is imputed by random contacts between the cathode active materials and the SE during the mixingmore »

We consider the highdimensional linear regression problem, where the algorithmic goal is to efficiently infer an unknown feature vector $\beta^*\in\mathbb{R}^p$ from its linear measurements, using a small number $n$ of samples. Unlike most of the literature, we make no sparsity assumption on $\beta^*$, but instead adopt a different regularization: In the noiseless setting, we assume $\beta^*$ consists of entries, which are either rational numbers with a common denominator $Q\in\mathbb{Z}^+$ (referred to as $Q$rationality); or irrational numbers taking values in a rationally independent set of bounded cardinality, known to learner; collectively called as the mixedrange assumption. Using a novel combination of the Partial Sum of Least Squares (PSLQ) integer relation detection, and the LenstraLenstraLov\'asz (LLL) lattice basis reduction algorithms, we propose a polynomialtime algorithm which provably recovers a $\beta^*\in\mathbb{R}^p$ enjoying the mixedrange assumption, from its linear measurements $Y=X\beta^*\in\mathbb{R}^n$ for a large class of distributions for the random entries of $X$, even with one measurement ($n=1$). In the noisy setting, we propose a polynomialtime, latticebased algorithm, which recovers a $\beta^*\in\mathbb{R}^p$ enjoying the $Q$rationality property, from its noisy measurements $Y=X\beta^*+W\in\mathbb{R}^n$, even from a single sample ($n=1$). We further establish that for large $Q$, and normal noise, this algorithm tolerates informationtheoretically optimal level ofmore »