Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to nonfederal websites. Their policies may differ from this site.

Abstract We introduce a new probabilistic model of the primes consisting of integers that survive the sieving process when a random residue class is selected for every prime modulus below a specific bound. From a rigorous analysis of this model, we obtain heuristic upper and lower bounds for the size of the largest prime gap in the interval $[1,x]$ [ 1 , x ] . Our results are stated in terms of the extremal bounds in the interval sieve problem. The same methods also allow us to rigorously relate the validity of the HardyLittlewood conjectures for an arbitrary set (such as the actual primes) to lower bounds for the largest gaps within that set.more » « lessFree, publiclyaccessible full text available September 1, 2024

Abstract We study the extent to which divisors of a typical integer n are concentrated. In particular, defining $$\Delta (n) := \max _t \# \{d  n, \log d \in [t,t+1]\}$$ Δ ( n ) : = max t # { d  n , log d ∈ [ t , t + 1 ] } , we show that $$\Delta (n) \geqslant (\log \log n)^{0.35332277\ldots }$$ Δ ( n ) ⩾ ( log log n ) 0.35332277 … for almost all n , a bound we believe to be sharp. This disproves a conjecture of Maier and Tenenbaum. We also prove analogs for the concentration of divisors of a random permutation and of a random polynomial over a finite field. Most of the paper is devoted to a study of the following much more combinatorial problem of independent interest. Pick a random set $${\textbf{A}} \subset {\mathbb {N}}$$ A ⊂ N by selecting i to lie in $${\textbf{A}}$$ A with probability 1/ i . What is the supremum of all exponents $$\beta _k$$ β k such that, almost surely as $$D \rightarrow \infty $$ D → ∞ , some integer is the sum of elements of $${\textbf{A}} \cap [D^{\beta _k}, D]$$ A ∩ [ D β k , D ] in k different ways? We characterise $$\beta _k$$ β k as the solution to a certain optimisation problem over measures on the discrete cube $$\{0,1\}^k$$ { 0 , 1 } k , and obtain lower bounds for $$\beta _k$$ β k which we believe to be asymptotically sharp.more » « lessFree, publiclyaccessible full text available June 1, 2024

Gowers, W. T. (Ed.)We prove a number of results, new and old, about the cycle type of a random permutation on S_n. Underlying our analysis is the idea that the number of cycles of size k is roughly Poisson distributed with parameter 1/k. In particular, we establish strong results about the distribution of the number of cycles whose lengths lie in a fixed but arbitrary set I. Our techniques are motivated by the theory of sieves in number theory.more » « less

Abstarct Given disjoint subsets T 1 , …, T m of “not too large” primes up to x , we establish that for a random integer n drawn from [1, x ], the m dimensional vector enumerating the number of prime factors of n from T 1 , …, T m converges to a vector of m independent Poisson random variables. We give a specific rate of convergence using the Kubilius model of prime factors. We also show a universal upper bound of Poisson type when T 1 , …, T m are unrestricted, and apply this to the distribution of the number of prime factors from a set T conditional on n having k total prime factors.more » « less

Abstract We determine, up to multiplicative constants, the number of integers $n\leq x$ that have a divisor in $(y,2y]$ and no prime factor $\leq w$ . Our estimate is uniform in $x,y,w$ . We apply this to determine the order of the number of distinct integers in the $N\times N$ multiplication table, which are free of prime factors $\leq w$ , and the number of distinct fractions of the form $(a_{1}a_{2})/(b_{1}b_{2})$ with $1\leq a_{1}\leq b_{1}\leq N$ and $1\leq a_{2}\leq b_{2}\leq N$ .more » « less

Alessandro Zaccagnini (Ed.)We show that the existence of arithmetic progressions with few primes, with a quantitative bound on ''few'', implies the existence of larger gaps between primes less than x than is currently known unconditionally. In particular, we derive this conclusion if there are certain types of exceptional zeros of Dirichlet Lfunctions.more » « less