Let $k \leq n$ be positive integers, and let $X_n = (x_1, \dots , x_n)$ be a list of $n$ variables. The Boolean product polynomial$B_{n,k}(X_n)$ is the product of the linear forms $\sum _{i \in S} x_i$, where $S$ ranges over all $k$element subsets of $\{1, 2, \dots , n\}$. We prove that Boolean product polynomials are Schur positive. We do this via a new method of proving Schur positivity using vector bundles and a symmetric function operation we call Chern plethysm. This gives a geometric method for producing a vast array of Schur positive polynomials whose Schur positivity lacks (at present) a combinatorial or representation theoretic proof. We relate the polynomials $B_{n,k}(X_n)$ for certain $k$ to other combinatorial objects including derangements, positroids, alternating sign matrices, and reverse flagged fillings of a partition shape. We also relate $B_{n,n1}(X_n)$ to a bigraded action of the symmetric group ${\mathfrak{S}}_n$ on a divergence free quotient of superspace.
 Award ID(s):
 1802139
 Publication Date:
 NSFPAR ID:
 10338318
 Journal Name:
 Journal of the Australian Mathematical Society
 Volume:
 111
 Issue:
 1
 Page Range or eLocationID:
 17 to 36
 ISSN:
 14467887
 Sponsoring Org:
 National Science Foundation
More Like this

Abstract 
Let $p:\mathbb{C}\rightarrow \mathbb{C}$ be a polynomial. The Gauss–Lucas theorem states that its critical points, $p^{\prime }(z)=0$ , are contained in the convex hull of its roots. We prove a stability version whose simplest form is as follows: suppose that $p$ has $n+m$ roots, where $n$ are inside the unit disk, $$\begin{eqnarray}\max _{1\leq i\leq n}a_{i}\leq 1~\text{and}~m~\text{are outside}~\min _{n+1\leq i\leq n+m}a_{i}\geq d>1+\frac{2m}{n};\end{eqnarray}$$ then $p^{\prime }$ has $n1$ roots inside the unit disk and $m$ roots at distance at least $(dnm)/(n+m)>1$ from the origin and the involved constants are sharp. We also discuss a pairing result: in the setting above, for $n$ sufficiently large, each of the $m$ roots has a critical point at distance ${\sim}n^{1}$ .

Abstract Let us fix a prime
p and a homogeneous system ofm linear equations for$$a_{j,1}x_1+\dots +a_{j,k}x_k=0$$ ${a}_{j,1}{x}_{1}+\cdots +{a}_{j,k}{x}_{k}=0$ with coefficients$$j=1,\dots ,m$$ $j=1,\cdots ,m$ . Suppose that$$a_{j,i}\in \mathbb {F}_p$$ ${a}_{j,i}\in {F}_{p}$ , that$$k\ge 3m$$ $k\ge 3m$ for$$a_{j,1}+\dots +a_{j,k}=0$$ ${a}_{j,1}+\cdots +{a}_{j,k}=0$ and that every$$j=1,\dots ,m$$ $j=1,\cdots ,m$ minor of the$$m\times m$$ $m\times m$ matrix$$m\times k$$ $m\times k$ is nonsingular. Then we prove that for any (large)$$(a_{j,i})_{j,i}$$ ${\left({a}_{j,i}\right)}_{j,i}$n , any subset of size$$A\subseteq \mathbb {F}_p^n$$ $A\subseteq {F}_{p}^{n}$ contains a solution$$A> C\cdot \Gamma ^n$$ $\leftA\right>C\xb7{\Gamma}^{n}$ to the given system of equations such that the vectors$$(x_1,\dots ,x_k)\in A^k$$ $({x}_{1},\cdots ,{x}_{k})\in {A}^{k}$ are all distinct. Here,$$x_1,\dots ,x_k\in A$$ ${x}_{1},\cdots ,{x}_{k}\in A$C and are constants only depending on$$\Gamma $$ $\Gamma $p ,m andk such that . The crucial point here is the condition for the vectors$$\Gamma $\Gamma <p$
in the solution$$x_1,\dots ,x_k$$ ${x}_{1},\cdots ,{x}_{k}$ to be distinct. If we relax this condition and only demand that$$(x_1,\dots ,x_k)\in A^k$$ $({x}_{1},\cdots ,{x}_{k})\in {A}^{k}$ are not all equal, then the statement would follow easily from Tao’s slice rank polynomial method. However, handling the distinctness condition is much harder, and requires a new approach. While all previous combinatorial applications of the slice rank polynomial method have relied on the slice rank of diagonal tensors, we use a slice rank argument for a nondiagonal tensor in combination with combinatorial and probabilistic arguments.$$x_1,\dots ,x_k$$ ${x}_{1},\cdots ,{x}_{k}$ 
Abstract Given a sequence $\{Z_d\}_{d\in \mathbb{N}}$ of smooth and compact hypersurfaces in ${\mathbb{R}}^{n1}$, we prove that (up to extracting subsequences) there exists a regular definable hypersurface $\Gamma \subset {\mathbb{R}}\textrm{P}^n$ such that each manifold $Z_d$ is diffeomorphic to a component of the zero set on $\Gamma$ of some polynomial of degree $d$. (This is in sharp contrast with the case when $\Gamma$ is semialgebraic, where for example the homological complexity of the zero set of a polynomial $p$ on $\Gamma$ is bounded by a polynomial in $\deg (p)$.) More precisely, given the above sequence of hypersurfaces, we construct a regular, compact, semianalytic hypersurface $\Gamma \subset {\mathbb{R}}\textrm{P}^{n}$ containing a subset $D$ homeomorphic to a disk, and a family of polynomials $\{p_m\}_{m\in \mathbb{N}}$ of degree $\deg (p_m)=d_m$ such that $(D, Z(p_m)\cap D)\sim ({\mathbb{R}}^{n1}, Z_{d_m}),$ i.e. the zero set of $p_m$ in $D$ is isotopic to $Z_{d_m}$ in ${\mathbb{R}}^{n1}$. This says that, up to extracting subsequences, the intersection of $\Gamma$ with a hypersurface of degree $d$ can be as complicated as we want. We call these ‘pathological examples’. In particular, we show that for every $0 \leq k \leq n2$ and every sequence of natural numbers $a=\{a_d\}_{d\in \mathbb{N}}$ there is a regular, compact semianalyticmore »

Abstract Consider averages along the prime integers ℙ given by {\mathcal{A}_N}f(x) = {N^{  1}}\sum\limits_{p \in \mathbb{P}:p \le N} {(\log p)f(x  p).} These averages satisfy a uniform scalefree ℓ p improving estimate. For all 1 < p < 2, there is a constant C p so that for all integer N and functions f supported on [0, N ], there holds {N^{  1/p'}}{\left\ {{\mathcal{A}_N}f} \right\_{\ell p'}} \le {C_p}{N^{  1/p}}{\left\ f \right\_{\ell p}}. The maximal function 𝒜 * f = sup N 𝒜 N f  satisfies ( p , p ) sparse bounds for all 1 < p < 2. The latter are the natural variants of the scalefree bounds. As a corollary, 𝒜 * is bounded on ℓ p ( w ), for all weights w in the Muckenhoupt 𝒜 p class. No prior weighted inequalities for 𝒜 * were known.