Abstract In situ digital inline holography is a technique which can be used to acquire high‐resolution imagery of plankton and examine their spatial and temporal distributions within the water column in a nonintrusive manner. However, for effective expert identification of an organism from digital holographic imagery, it is necessary to apply a computationally expensive numerical reconstruction algorithm. This lengthy process inhibits real‐time monitoring of plankton distributions. Deep learning methods, such as convolutional neural networks, applied to interference patterns of different organisms from minimally processed holograms can eliminate the need for reconstruction and accomplish real‐time computation. In this article, we integrate deep learning methods with digital inline holography to create a rapid and accurate plankton classification network for 10 classes of organisms that are commonly seen in our data sets. We describe the procedure from preprocessing to classification. Our network achieves 93.8% accuracy when applied to a manually classified testing data set. Upon further application of a probability filter to eliminate false classification, the average precision and recall are 96.8% and 95.0%, respectively. Furthermore, the network was applied to 7500 in situ holograms collected at East Sound in Washington during a vertical profile to characterize depth distribution of the local diatoms. The results are in agreement with simultaneously recorded independent chlorophyll concentration depth profiles. This lightweight network exemplifies its capability for real‐time, high‐accuracy plankton classification and it has the potential to be deployed on imaging instruments for long‐term in situ plankton monitoring.
more »
« less
Content-Aware Segmentation of Objects Spanning a Large Size Range: Application to Plankton Images
As the basis of oceanic food webs and a key component of the biological carbon pump, planktonic organisms play major roles in the oceans. Their study benefited from the development of in situ imaging instruments, which provide higher spatio-temporal resolution than previous tools. But these instruments collect huge quantities of images, the vast majority of which are of marine snow particles or imaging artifacts. Among them, the In Situ Ichthyoplankton Imaging System (ISIIS) samples the largest water volumes (> 100 L s -1 ) and thus produces particularly large datasets. To extract manageable amounts of ecological information from in situ images, we propose to focus on planktonic organisms early in the data processing pipeline: at the segmentation stage. We compared three segmentation methods, particularly for smaller targets, in which plankton represents less than 1% of the objects: (i) a traditional thresholding over the background, (ii) an object detector based on maximally stable extremal regions (MSER), and (iii) a content-aware object detector, based on a Convolutional Neural Network (CNN). These methods were assessed on a subset of ISIIS data collected in the Mediterranean Sea, from which a ground truth dataset of > 3,000 manually delineated organisms is extracted. The naive thresholding method captured 97.3% of those but produced ~340,000 segments, 99.1% of which were therefore not plankton (i.e. recall = 97.3%, precision = 0.9%). Combining thresholding with a CNN missed a few more planktonic organisms (recall = 91.8%) but the number of segments decreased 18-fold (precision increased to 16.3%). The MSER detector produced four times fewer segments than thresholding (precision = 3.5%), missed more organisms (recall = 85.4%), but was considerably faster. Because naive thresholding produces ~525,000 objects from 1 minute of ISIIS deployment, the more advanced segmentation methods significantly improve ISIIS data handling and ease the subsequent taxonomic classification of segmented objects. The cost in terms of recall is limited, particularly for the CNN object detector. These approaches are now standard in computer vision and could be applicable to other plankton imaging devices, the majority of which pose a data management problem.
more »
« less
- Award ID(s):
- 1927710
- PAR ID:
- 10338672
- Date Published:
- Journal Name:
- Frontiers in Marine Science
- Volume:
- 9
- ISSN:
- 2296-7745
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
e apply a new deep learning technique to detect, classify, and deblend sources in multi-band astronomical images. We train and evaluate the performance of an artificial neural network built on the Mask R-CNN image processing framework, a general code for efficient object detection, classification, and instance segmentation. After evaluating the performance of our network against simulated ground truth images for star and galaxy classes, we find a precision of 92% at 80% recall for stars and a precision of 98% at 80% recall for galaxies in a typical field with ∼30 galaxies/arcmin2. We investigate the deblending capability of our code, and find that clean deblends are handled robustly during object masking, even for significantly blended sources. This technique, or extensions using similar network architectures, may be applied to current and future deep imaging surveys such as LSST and WFIRST. Our code, Astro R-CNN, is publicly available at https://github.com/burke86/astro_rcnnmore » « less
-
The small sizes of most marine plankton necessitate that plankton sampling occur on fine spatial scales, yet our questions often span large spatial areas. Underwater imaging can provide a solution to this sampling conundrum but collects large quantities of data that require an automated approach to image analysis. Machine learning for plankton classification, and high-performance computing (HPC) infrastructure, are critical to rapid image processing; however, these assets, especially HPC infrastructure, are only available post-cruise leading to an ‘after-the-fact’ view of plankton community structure. To be responsive to the often-ephemeral nature of oceanographic features and species assemblages in highly dynamic current systems, real-time data are key for adaptive oceanographic sampling. Here we used the new In-situ Ichthyoplankton Imaging System-3 (ISIIS-3) in the Northern California Current (NCC) in conjunction with an edge server to classify imaged plankton in real-time into 170 classes. This capability together with data visualization in a heavy.ai dashboard makes adaptive real-time decision-making and sampling at sea possible. Dual ISIIS-Deep-focus Particle Imager (DPI) cameras sample 180 L s -1 , leading to >10 GB of video per min. Imaged organisms are in the size range of 250 µm to 15 cm and include abundant crustaceans, fragile taxa (e.g., hydromedusae, salps), faster swimmers (e.g., krill), and rarer taxa (e.g., larval fishes). A deep learning pipeline deployed on the edge server used multithreaded CPU-based segmentation and GPU-based classification to process the imagery. AVI videos contain 50 sec of data and can contain between 23,000 - 225,000 particle and plankton segments. Processing one AVI through segmentation and classification takes on average 3.75 mins, depending on biological productivity. A heavyDB database monitors for newly processed data and is linked to a heavy.ai dashboard for interactive data visualization. We describe several examples where imaging, AI, and data visualization enable adaptive sampling that can have a transformative effect on oceanography. We envision AI-enabled adaptive sampling to have a high impact on our ability to resolve biological responses to important oceanographic features in the NCC, such as oxygen minimum zones, or harmful algal bloom thin layers, which affect the health of the ecosystem, fisheries, and local communities.more » « less
-
Abstract Trait-based simplifications of plankton community structure require accurate assessment of trait values as expressed in situ. Yet planktonic organisms live suspended in a fluid medium and often bear elongate appendages, delicate feeding structures, and mucous houses that are badly damaged upon capture or removal from the fluid environment. Fixatives further distort organisms. In situ imaging of zooplankton from a fully autonomous Zooglider reveals a suite of trait characteristics that often differ markedly from those inferred from conventionally sampled plankton. In situ images show fragile feeding appendages in natural hunting postures, including reticulate networks of rhizopods, feeding tentacles of cnidarians, and tentilla of ctenophores; defensive spines and setae of copepods; intact mucous houses of appendicularians; and other structures that are not discernible in conventionally collected zooplankton. Postures characteristic of dormant copepods can be identified and the presence of egg sacs detected. Intact, elongate diatom chains that are much longer than measured in sampled specimens are resolvable in situ. The ability to image marine snow, as well as small-scale fluid deformations, reveals micro-habitat structure that may alter organismal behaviour. Trait-based representations of planktonic organisms in biogeochemical cycles need to consider naturally occurring traits expressed by freely suspended planktonic organisms in situ.more » « less
-
Leonardis, A; Ricci, E; Roth, S; Russakovsky, O; Sattler, T; Varol, G (Ed.)Embodied agents must detect and localize objects of interest, e.g. traffic participants for self-driving cars. Supervision in the form of bounding boxes for this task is extremely expensive. As such, prior work has looked at unsupervised instance detection and segmentation, but in the absence of annotated boxes, it is unclear how pixels must be grouped into objects and which objects are of interest. This results in over-/under- segmentation and irrelevant objects. Inspired by human visual system and practical applications, we posit that the key missing cue for un- supervised detection is motion: objects of interest are typically mobile objects that frequently move and their motions can specify separate in- stances. In this paper, we propose MOD-UV, a Mobile Object Detector learned from Unlabeled Videos only. We begin with instance pseudo- labels derived from motion segmentation, but introduce a novel training paradigm to progressively discover small objects and static-but-mobile objects that are missed by motion segmentation. As a result, though only learned from unlabeled videos, MOD-UV can detect and segment mo- bile objects from a single static image. Empirically, we achieve state-of- the-art performance in unsupervised mobile object detection on Waymo Open, nuScenes, and KITTI Datasets without using any external data or supervised models. Code is available at github.com/YihongSun/MOD-UV.more » « less
An official website of the United States government

