skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Low-Frequency Magnetoelectric Effects in Magnetostrictive–Piezoelectric Bilayers: Longitudinal and Bending Deformations
A model for the low-frequency magnetoelectric (ME) effect that takes into consideration the bending deformation in a ferromagnetic and ferroelectric bilayer is presented. Past models, in general, ignored the influence of bending deformation. Based on the solution of the equations of the elastic theory and electrostatics, expressions for the ME voltage coefficients (MEVCs) and ME sensitivity coefficients (MESCs) in terms of the physical parameters of the materials and the geometric characteristic of the structure were obtained. Contributions from both bending and planar deformations were considered. The theory was applied to composites of PZT and Ni with negative magnetostriction, and Permendur, or Metglas, both with positive magnetostriction. Estimates of MEVCs and MESCs indicate that the contribution from bending deformation is significant but smaller than the contribution from planar deformations, leading to a reduction in the net ME coefficients in all the three bilayer systems.  more » « less
Award ID(s):
1808892 1923732
PAR ID:
10339056
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Composites Science
Volume:
5
Issue:
11
ISSN:
2504-477X
Page Range / eLocation ID:
287
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Here, we discuss a model for the quasi-static magnetoelectric (ME) interaction in three-layer composites consisting of a single piezoelectric (PE) layer and two magnetostrictive (MS) layers with positive and negative magnetostriction. Two types of layer arrangements are considered: Type 1: a sandwich structure with the PE layer between the two MS layers and Type 2: the two MS layers form the adjacent layers. Expressions for the ME response are obtained using the system of equations of elasto- and electrostatics for the PE and MS phases. The contributions from longitudinal and bending vibrations to the net ME response are considered. The theory is applied for trilayers consisting of lead zirconate titanate (PZT), nickel for negative magnetostriction, and Metglas for positive magnetostriction. Estimates of the dependence of the strength of the ME response on the thickness of the three layers are provided. It is shown that the asymmetric three-layer structures of both types lead to an increase in the strength of ME interactions by almost an order of magnitude compared to a two-layer piezoelectric-magnetostrictive structure. The model predicts a much stronger ME response in Type 2 structures than in Type 1. The theory discussed here is of importance for designing composites for applications such as magnetic field sensors, gyrators, and energy harvesters. 
    more » « less
  2. The magnetoelectric effect (ME) is an important strain mediated-phenomenon in a ferromagnetic-piezoelectric composite for a variety of sensors and signal processing devices. A bias magnetic field, in general, is essential to realize a strong ME coupling in most composites. Magnetic phases with (i) high magnetostriction for strong piezomagnetic coupling and (ii) large anisotropy field that acts as a built-in bias field are preferred so that miniature, ME composite-based devices can operate without the need for an external magnetic field. We are able to realize such a magnetic phase with a composite of (i) barium hexaferrite (BaM) with high magnetocrystalline anisotropy field and (ii) nickel ferrite (NFO) with high magnetostriction. The BNx composites, with (100 − x) wt.% of BaM and x wt.% NFO, for x = 0–100, were prepared. X-ray diffraction analysis shows that the composites did not contain any impurity phases. Scanning electron microscopy images revealed that, with an increase in NFO content, hexagonal BaM grains become prominent, leading to a large anisotropy field. The room temperature saturation magnetization showed a general increase with increasing BaM content in the composites. NFO rich composites with x ≥ 60 were found to have a large magnetostriction value of around −23 ppm, comparable to pure NFO. The anisotropy field HA of the composites, determined from magnetization and ferromagnetic resonance (FMR) measurements, increased with increasing NFO content and reached a maximum of 7.77 kOe for x = 75. The BNx composite was cut into rectangular platelets and bonded with PZT to form the bilayers. ME voltage coefficient (MEVC) measurements at low frequencies and at mechanical resonance showed strong coupling at zero bias for samples with x ≥ 33. This large in-plane HA acted as a built-in field for strong ME effects under zero external bias in the bilayers. The highest zero-bias MEVC of ~22 mV/cm Oe was obtained for BN75-PZT bilayers wherein BN75 also has the highest HA. The Bilayer of BN95-PZT showed a maximum MEVC ~992 mV/cm Oe at electromechanical resonance at 59 kHz. The use of hexaferrite–spinel ferrite composite to achieve strong zero-bias ME coupling in bilayers with PZT is significant for applications related to energy harvesting, sensors, and high frequency devices. 
    more » « less
  3. Ionic polymer metal composites (IPMCs) are a class of soft electroactive polymers. IPMCs comprise a soft ionic polymer core, on which two stiff metal electrodes are plated. These active materials exhibit large bend- ing upon the application of a small driving voltage across their electrodes, in air or in aqueous environments. In a recent work, we presented compelling theoretical and numerical evidence suggesting that ionic polymer membranes exhibit complex multiaxial deformations neglected by reduced-order structural models. Where most beam theories (including Euler-Bernoulli, Timoshenko, and most higher-order shear deformation models) would suggest vanishing through-the-thickness deformation, we discover the onset of localized deformation that rever- berates into axial stretching. Building upon this effort, here we investigate the role of the electrodes and shear on multiaxial deformations of IPMCs. We establish a novel structural theory for IPMCs, based on the Euler- Bernoulli kinematics enriched with the through-the-thickness deformation in the ionic polymer, computed from a Saint-Venant-like problem for uniform bending. While considering boundary conditions that elicit non-uniform bending, we compare the results of this model against classical Euler-Bernoulli beam theory without enrichment and finite element simulations, encapsulating the nonlinear response of the material. We demonstrate that our theory can predict the macroscopic displacement of the IPMC, along with the localized deformation in the ionic polymer at the interface with the electrodes, which are not captured by the classical Euler-Bernoulli beam theory. This work paves the way to the development of more sophisticated structural theories for IPMCs and analogous active materials, affording an accurate description of deformations at a limited computational cost. 
    more » « less
  4. Abstract Liquid crystal elastomers (LCEs) marry the large deformation response of a cross-linked polymer network with the nematic order of liquid crystals pendent to the network. Of particular interest is the actuation of LCE sheets where the nematic order, modeled by a unit vector called the director, is specified heterogeneously in the plane of the sheet. Heating such a sheet leads to a large spontaneous deformation, coupled to the director design through a metric constraint that is now well-established by the literature. Here we go beyond the metric constraint and identify the full plate theory that underlies this phenomenon. Starting from a widely used bulk model for LCEs, we derive a plate theory for the pure bending deformations of patterned LCE sheets in the limit that the sheet thickness tends to zero using the framework of$$\Gamma $$ Γ -convergence. Specifically, after dividing the bulk energy by the cube of the thickness to set a bending scale, we show that all limiting midplane deformations with bounded energy at this scale satisfy the aforementioned metric constraint. We then identify the energy of our plate theory as an ansatz-free lower bound of the limit of the scaled bulk energy, and construct a recovery sequence that achieves this plate energy for all smooth enough midplane deformations. We conclude by applying our plate theory to a variety of examples. 
    more » « less
  5. We study the deformations of elastic filaments confined within slowly shrinking circular boundaries, under contact forces with friction. We perform computations with a spring-lattice model that deforms like a thin inextensible filament of uniform bending stiffness. Early in the deformation, two lobes of the filament make contact. If the friction coefficient is small enough, one lobe slides inside the other; otherwise, the lobes move together or one lobe bifurcates the other. There follows a sequence of deformations that is a mixture of spiralling and bifurcations, primarily the former with small friction and the latter with large friction. With zero friction, a simple model predicts that the maximum curvature and the total elastic energy scale as the wall radius to the − 3 / 2 and − 2 powers, respectively. With non-zero friction, the elastic energy follows a similar scaling but with a prefactor up to eight times larger, due to delayering and bending with a range of small curvatures. For friction coefficients as large as 1, the deformations are qualitatively similar with and without friction at the outer wall. Above 1, the wall friction case becomes dominated by buckling near the wall. 
    more » « less