Die-stacked DRAM (a.k.a., on-chip DRAM) provides much higher bandwidth and lower latency than off-chip DRAM. It is a promising technology to break the “memory wall”. Die-stacked DRAM can be used either as a cache (i.e., DRAM cache) or as a part of memory (PoM). A DRAM cache design would suffer from more page faults than a PoM design as the DRAM cache cannot contribute towards capacity of main memory. At the same time, obtaining high performance requires PoM systems to swap requested data to the die-stacked DRAM. Existing PoM designs fall into two categories - line-based and page-based. The former ensures low off-chip bandwidth utilization but suffers from a low hit ratio of on-chip memory due to limited temporal locality. In contrast, page-based designs achieve a high hit ratio of on-chip memory albeit at the cost of moving large amounts of data between on-chip and off-chip memories, leading to increased off-chip bandwidth utilization and significant system performance degradation. To achieve a similar high hit ratio of on-chip memory as pagebased designs, and eliminate excessive off-chip traffic involved, we propose SELF, a high performance and bandwidth efficient approach. The key idea is to SElectively swap Lines in a requested page that are likely to be accessed according to page Footprint, instead of blindly swapping an entire page. In doing so, SELF allows incoming requests to be serviced from the on-chip memory as much as possible, while avoiding swapping unused lines to reduce memory bandwidth consumption. We evaluate a memory system which consists of 4GB on-chip DRAM and 12GB offchip DRAM. Compared to a baseline system that has the same total capacity of 16GB off-chip DRAM, SELF improves the performance in terms of instructions per cycle by 26.9%, and reduces the energy consumption per memory access by 47.9% on average. In contrast, state-of-the-art line-based and page-based PoM designs can only improve the performance by 9.5% and 9.9%, respectively, against the same baseline system.
more »
« less
System and Design Technology Co-Optimization of SOT-MRAM for High-Performance AI Accelerator Memory System
System on chips (SoCs) are now designed with their own artificial intelligence (AI) accelerator segment to accommodate the ever-increasing demand of deep learning (DL) applications. With powerful multiply and accumulate (MAC) engines for matrix multiplications, these accelerators show high computing performance. However, because of limited memory resources (i.e., bandwidth and capacity), they fail to achieve optimum system performance during large batch training and inference. In this work, we propose a memory system with high on-chip capacity and bandwidth to shift the gear of AI accelerators from memory-bound to achieving system-level peak performance. We develop the memory system with design technology co-optimization (DTCO)-enabled customized spin-orbit torque (SOT)-MRAM as large on-chip memory through system technology co-optimization (STCO) and detailed characterization of the DL workloads. Our workload-aware memory system achieves 8× energy and 9× latency improvement on computer vision (CV) benchmarks in training and 8× energy and 4.5× latency improvement on natural language processing (NLP) benchmarks in training while consuming only around 50% of SRAM area at iso-capacity.
more »
« less
- Award ID(s):
- 2153394
- PAR ID:
- 10504648
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
- Volume:
- 43
- Issue:
- 4
- ISSN:
- 0278-0070
- Page Range / eLocation ID:
- 1065 to 1078
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The convergence of edge computing and artificial intelligence requires that inference is performed on-device to provide rapid response with low latency and high accuracy without transferring large amounts of data to the cloud. However, power and size limitations make it challenging for electrical accelerators to support both inference and training for large neural network models. To this end, we propose Trident, a low-power photonic accelerator that combines the benefits of phase change material (PCM) and photonics to implement both inference and training in one unified architecture. Emerging silicon photonics has the potential to exploit the parallelism of neural network models, reduce power consumption and provide high bandwidth density via wavelength division multiplexing, making photonics an ideal candidate for on-device training and inference. As PCM is reconfigurable and non-volatile, we utilize it for two distinct purposes: (i) to maintain resonant wavelength without expensive electrical or thermal heaters, and (ii) to implement non-linear activation function, which eliminates the need to move data between memory and compute units. This multi-purpose use of PCM is shown to lead to significant reduction in energy consumption and execution time. Compared to photonic accelerators DEAP-CNN, CrossLight, and PIXEL, Trident improves energy efficiency by up to 43% and latency by up to 150% on average. Compared to electronic edge AI accelerators Google Coral which utilizes the Google Edge TPU and Bearkey TB96-AI, Trident improves energy efficiency by 11% and 93% respectively. While NVIDIA AGX Xavier is more energy efficient, the reduced data movement and GST activation of Trident reduce latency by 107% on average compared to the NVIDIA accelerator. When compared to the Google Coral and the Bearkey TB96-AI, Trident reduces latency by 1413% and 595% on average.more » « less
-
Description / Abstract: In order to effectively provide INaaS (Inference-as-a-Service) for AI applications in resource-limited cloud environments, two major challenges must be overcome: achieving low latency and providing multi-tenancy. This paper presents EIF (Efficient INaaS Framework), which uses a heterogeneous CPU-FPGA architecture to provide three methods to address these challenges (1) spatial multiplexing via software-hardware co-design virtualization techniques, (2) temporal multiplexing that exploits the sparsity of neural-net models, and (3) streaming-mode inference which overlaps data transfer and computation. The prototype EIF is implemented on an Intel PAC (shared-memory CPU-FPGA) platform. For evaluation, 12 types of DNN models were used as benchmarks, with different size and sparsity. Based on these experiments, we show that in EIF, the temporal multiplexing technique can improve the user density of an AI Accelerator Unit from 2$$\times$$ to 6$$\times$$, with marginal performance degradation. In the prototype system, the spatial multiplexing technique supports eight AI Accelerators Unit on one FPGA. By using a streaming mode based on a Mediated Pass-Through architecture, EIF can overcome the FPGA on-chip memory limitation to improve multi-tenancy and optimize the latency of INaaS. To further enhance INaaS, EIF utilizes the MapReduce function to provide a more flexible QoS. Together with the temporal/spatial multiplexing techniques, EIF can support 48 users simultaneously on a single FPGA board in our prototype system. In all tested benchmarks, cold-start latency accounts for only approximately 5\% of the total response time.more » « less
-
Recent advances in GPU-based manycore accelerators provide the opportunity to efficiently process large-scale graphs on chip. However, real world graphs have a diverse range of topology and connectivity patterns (e.g., degree distributions) that make the design of input-agnostic hardware architectures a challenge. Network-on-Chip (NoC)- based architectures provide a way to overcome this challenge as the architectural topology can be used to approximately model the expected traffic patterns that emerge from graph application workloads. In this paper, we first study the mix of long- and short-range traffic patterns generated on-chip using graph workloads, and subsequently use the findings to adapt the design of an optimal NoC-based architecture. In particular, by leveraging emerging three-dimensional (3D) integration technology, we propose design of a small-world NoC (SWNoC)- enabled manycore GPU architecture, where the placement of the links connecting the streaming multiprocessors (SM) and the memory controllers (MC) follow a power-law distribution. The proposed 3D manycore GPU architecture outperforms the traditional planar (2D) counterparts in both performance and energy consumption. Moreover, by adopting a joint performance-thermal optimization strategy, we address the thermal concerns in a 3D design without noticeably compromising the achievable performance. The 3D integration technology is also leveraged to incorporate Near Data Processing (NDP) to complement the performance benefits introduced by the SWNoC architecture. As graph applications are inherently memory intensive, off-chip data movement gives rise to latency and energy overheads in the presence of external DRAM. In conventional GPU architectures, as the main memory layer is not integrated with the logic, off-chip data movement negatively impacts overall performance and energy consumption. We demonstrate that NDP significantly reduces the overheads associated with such frequent and irregular memory accesses in graph-based applications. The proposed SWNoC-enabled NDP framework that integrates 3D memory (like Micron's HMC) with a massive number of GPU cores achieves 29.5% performance improvement and 30.03% less energy consumption on average compared to a conventional planar Mesh-based design with external DRAM.more » « less
-
Big data computing applications such as deep learning and graph analytic usually incur a large amount of data movements. Deploying such applications on conventional von Neumann architecture that separates the processing units and memory components likely leads to performance bottleneck due to the limited memory bandwidth. A common approach is to develop architecture and memory co-design methodologies to overcome the challenge. Our research follows the same strategy by leveraging resistive memory (ReRAM) to further enhance the performance and energy efficiency. Specifically, we employ the general principles behind processing-in-memory to design efficient ReRAM based accelerators that support both testing and training operations. Related circuit and architecture optimization will be discussed too.more » « less
An official website of the United States government

